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ABSTRACT 

There is an increasing use of contactless smart card technology for identification, 

access control, and financial transactions due to its numerous advantages. 

However, there is also an increasing number of attacks that exploit the insecure 

contactless communications in order to gain unauthorized access to personal 

and sensitive information for illegitimate use. The Open Protocol for Access 

Control Identification and Ticketing with privacY (OPACITY) and the Protocol for 

Lightweight Authentication of Identity (PLAID) are two privacy-enhanced 

protocols that enable secure contactless communications to protect the 

confidentiality, integrity, and authenticity of contactless smart card information 

and transactions.  

 This thesis will examine and analyze the principle mechanisms behind the 

OPACITY and the PLAID protocols to determine the strengths and weaknesses 

of the protocols, as well as to benchmark the performance of the protocols 

against each other.       
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I. INTRODUCTION  

A. INTRODUCTION 

With the proliferation of information technology, organizations today are 

beginning to realize that protection of business information from malicious (and 

non-malicious yet, nonetheless, harmful) acts is a growing concern [1]. The fact 

that information security is multi-faceted and complex results in many 

organizations struggling to implement an effective set of security practices [2]. In 

particular, organizations are focusing on effectively administering access to 

resources by employing physical access controls as well as logical access 

controls to protect valuable resources.  

Traditionally, the means of coordinating people and privileges have always 

revolved around the need to establish identity. An example of this is the use of a 

library card to allow a library to determine how much and what types of books an 

individual is allowed to borrow. Other examples include driving licenses, credit 

cards, and employee identification cards. In the past, these cards relied on a 

trusted party to verify that the holder had the identity as represented on the card. 

The party then mapped the identity to determine the holder’s rights and 

privileges. However, with the increased prevalence of technology, this old and 

easily subverted method has been replaced with newer technologies that enable 

greater confidence in the veracity of the identity presented. The newer 

technologies include electronic devices such as card readers that are employed 

to automate the identification process, resulting in reduced cost, increased 

convenience, and more trustworthy implementations [3].  

Although such technologies offer significant benefits, there is, at the core 

of the process, a more complicated electronic transaction that must be 

thoroughly scrutinized to ensure that it delivers a verified identity and is not (at 

least easily) subvertible. Since all forms of access control—whether physical or 

logical—depend greatly on the accuracy of the subject identification process, 

getting this correct is of utmost importance. Additionally, to further elaborate on 
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the access control issues faced by organizations today, many  companies see a 

frequent turnover of employees or contractors, which may allow unauthorized 

people to gain access to valuable information. 

The introduction of contactless smart card systems greatly improves the 

usability of smart card systems. Users no longer need to carry multiple 

credentials to access different applications and access rights can be controlled 

from a central location to easily grant or withdraw access rights in a single 

transaction, reducing the complexity of the process and lowering the overall 

maintenance cost and effort [3]. In addition, there is also improved security as 

some of the smart card systems use cryptographic algorithms to enhance the 

security of the transactions.   

While there is sufficient literature on how contactless smart cards should 

be used in organizations, less is known about the different security protocols 

employed by the cards. Since the  introduction of contactless smart cards in 

2009, two privacy-enhanced protocols, OPACITY (Open Protocol for Access 

Control Identification and Ticketing with privacY) [4] and PLAID (Protocol for 

Lightweight Authentication of ID) [5], have garnered little attention from the 

industry or academia. Furthermore, the two protocols have never been compared 

in order to determine their relative security strengths and limitations. This 

shortage of protocol scrutiny provides a fair justification for the need to examine 

and compare these two security protocols for contactless smart card 

applications, involving logical access control (LAC) and physical access control 

(PAC) transactions.  

B. MOTIVATION 

Although most organizations have implemented the use of contactless 

smart cards for access control in accordance with international standards or 

recommended guidelines, many of the contactless smart cards have failed to 

achieve their desired effect, resulting in security lapses. This is because 

organizations do not fully understand how these protocols work. Typically, 

organizations do not select the optimal protocol based on the strengths and 
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limitations that best match their security policy, but instead they select the 

protocol based on vendor recommendations. 

The need for research in this area is also justified from other perspectives. 

Firstly, this thesis aims to address the lack of available literature on OPACITY 

and PLAID protocols as described previously. This thesis examines and analyzes 

the principle security mechanisms behind OPACITY and PLAID protocols that 

enable them to provide secure transactions. It determines the strengths and 

limitations of the protocols, and compares the protocols to each other. The 

usefulness of this thesis will be evident to researchers and industry seeking to 

understand the differences between both protocols when considering which to 

adopt/employ.  

Secondly, this thesis aims to determine how best to evaluate and compare 

the two different protocols using standards/guidelines, such as International 

Organization for Standardization (ISO) 24727 and Federal Processing 

Information Standards (FIPS) 140–2 as a baseline for comparative evaluation. 

We suggest a methodology where excerpts from different standards/guidelines 

are examined to create a list of factors that can be used for comparison between 

the two protocols. Firstly, we examine the requirements recommended or 

stipulated by relevant guidelines and standards to identify suitable factors that 

can be used for comparison. Secondly, we use the identified factors to compare 

the factors. 

C. RESEARCH METHOD 

As the protocols are relatively new, very little research has been 

performed on them, resulting in limited literature on these protocols. Hence, the 

research method will comprise mainly of literature review, using materials 

released by the protocol developers and the industry on contactless smart card. 

The use of literature review provides the theoretical framework for further 

planning and study. It is also a particularly effective approach for deriving the 

different criteria for comparison. Another benefit of literature review is that it 

allows us to familiarize ourselves with the protocols so that we can articulate the 
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key research issues better after performing a thorough comparative study. A high 

level of product and intrinsic computer security knowledge is required to ensure 

that the information written is accurate and meaningful. 

D. THESIS ORGANIZATION 

This thesis is broken into three sections and it consists of seven chapters.  

 Chapter I describes the motivation for this thesis and outlines the content 

of each chapter.   

Chapter II lays the foundation for this thesis and provides an overview of 

contactless smart card systems that includes the architecture, standards, 

applications, as well as the threats, vulnerabilities, and security requirements of 

contactless smart card systems. The threats, vulnerabilities, and security 

requirements will drive the need for OPACITY and PLAID protocols, which is the 

focus of subsequent chapters and forms the core of this thesis.  

Chapter III and Chapter IV describe the OPACITY and PLAID protocols, 

respectively. The chapters include an overview of the protocols, their features, 

and the corresponding principle security mechanisms that provide the necessary 

security for contactless smart card transactions. The next two chapters focus on 

the comparisons between the protocols.  

Chapter V describes the methodology and it lists the factors that have 

been identified to compare the protocols, while Chapter 6 presents the results, 

analysis, and conclusions drawn from the comparisons.  

Finally, Chapter VII provides recommendations for future work and 

summarize the thesis respectively.  



 5

II. OVERVIEW OF CONTACTLESS SMART CARD 
TECHNOLOGY 

A. HISTORY OF SMART CARDS 

The history of smart cards can be traced back to the early 1950s when the 

Diner’s Club introduced the use of plastic cards that their customers could use for 

payment applications in the United States. This revolutionized the way in which 

customers could make payments as these cards provided the customer with a 

form of identity to a select group, and businesses that recognized this group 

would accept payments using these cards.  

However, in the 1960s, the cost pressures of card frauds and card 

tampering necessitated a card that would overcome these challenges. Finally, in 

1968, German inventors Jurgen Dethloff and Helmet Grotrupp filed a patent for 

using plastic as carriers for microchips, which resulted in the creation of the 

world’s first smart cards [6]. These microchips have security mechanisms that 

make them an ideal medium for safely storing cryptographic keys and algorithms 

used to more assuredly identify a card’s owner.  

Banks subsequently began to use these types of cards and governments 

soon followed suit by issuing such cards to citizens as forms of identity. Today, 

such technology is prevalent in our daily lives. 

B. ARCHITECTURE  

A smart card can essentially be defined as any form of pocket-sized card 

that is embedded with integrated circuits that allows it to process and store 

information. Essentially, there are two broad categories of smart cards, namely 

contact-based and contactless smart cards. However, for the purpose of this 

thesis, the primary focus is on the contactless smart cards.  

Contactless smart card technology is often utilized in applications that are 

used to protect personal information or deliver secure transactions. In particular, 
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there are many different ways that contactless smart cards utilize embedded 

antennas to exchange data stored in the chip’s memory to a remote device.  

For the purpose of communications security, international standards limit 

the operating range of most contactless smart cards to approximately 3 to 4 

inches [7]. However, applications that require longer reading distances can rely 

on other forms of contactless technologies, such as RFID. Contactless smart 

cards contain a re-writable smart card microchip that is used to read or write via 

radio waves. Depending on how these contactless smart cards are implemented, 

processing and storage of information may also be performed using a 

microprocessor found in the chip itself. Most modern contactless smart cards rely 

on a built-in inductor to capture incident electromagnetic energy that is then used 

to power the chip electronics. These cards provide significantly higher levels of 

security by implementing encryption [8], have a much larger memory storage 

capacity and are able to have information written onto them in real time, allowing 

a single card to be used for numerous applications, such as access control, 

vending, or fare collection.  

C. STANDARDS 

This section provides a brief introduction to some of the standards used 

for contactless smart card systems. Standards are important as they often 

reduce the cost of technology adoption for organizations. Perhaps the most 

important purpose of standards is that they provide an amalgamation of the 

industry’s best practices to ensure issues such as inter-operability and 

implementation can be resolved efficiently.  

The ISO 7816, ISO 14443, and ISO 24727 series are the common 

standards for contactless smart card systems. It is important to know that these 

standards should not be implemented in isolation. Instead, these standards 

should be used to complement one another in order to produce a more robust 
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product. An example is the Europay, Mastercard and VISA (EMV) standard, 

which uses the ISO 7816 and ISO 14443 series to define the interface standards 

for financial transactions.  

1. ISO 7816 

One of the standards most commonly related to smart cards is the ISO 

7816 series standard. This series consists of fifteen parts and defines details 

such as card dimensions, type of electronic signals, and transmission protocols. 

2. ISO 14443 

Similar to the ISO 7816 series, the ISO 14443 series is another 

international standard that describes how contactless smart cards and terminals 

should work to ensure industry-wide compatibility. The ISO 14443 series 

addresses the card’s physical characteristics, radio frequency power, and signal 

interface, initialization, and anti-collision, as well as the transmission protocol of 

contactless smart card systems. 

3. ISO 24727 

In the area of security for smart cards, the ISO 24727 series is the first 

international standard that addresses the need for a layered framework to 

support interoperability of smart cards providing security features such as 

identification, authentication, and digital signatures. 

D. APPLICATIONS 

There is an increasing use of contactless smart card systems due to the 

convenience, performance, and basic security that the systems provide, as well 

as the ease of integrating these systems for use in a wide range of applications.  

Based on a market analysis report released by Frost & Sullivan in 2008 on 

the world outlook for deployment of contactless smart cards, the potential gross 

revenue was forecasted to  reach approximately U.S.$2 billion in 2012 based on 

a compound annual growth rate of approximately 21.7% from 2006 to 2012 [9]. In 
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another recent market analysis report released by Frost & Sullivan in 2010 on the 

contactless smart card deployment in the Asia-Pacific region, the region’s gross 

revenue alone was forecasted to reach approximately U.S.$2 billion by the close 

of 2016, with 1.9 billion contactless smart cards estimated to be shipped [10]. 

This is a large increase compared to the 590 million contactless smart cards that 

were shipped in 2009. A similar market analysis conducted by IMS Research 

also forecasted that there would be an increasing demand for contactless smart 

cards [11]. The analysis predicted that the world’s contactless smart card 

shipment would increase from 950 million in 2010 to 3.5 billion in 2016.  

These reports are largely in agreement that the use of contactless smart 

cards as a means for identifications, financial applications, and access controls 

are the main drivers for the rise in the use of contactless smart cards.  

1. Identification 

The primary market for the use of contactless smart cards as a means of 

identification is for government identification credentials such as electronic 

passports (e-passports) and electronic ID cards (e-IDs). The e-passports and e-

IDs have a small contactless chip (i.e., integrated circuit) embedded in each of 

them. The chip is used to store personally identifiable information (PII) which is 

used to identify the identity of the card’s owner. In addition, the cards are 

designed with multiple layers of security, such as cryptography and multi-factor 

authentication, to protect the PII from identity theft. These documents are less 

prone to identity theft compared to traditional identification documents.  

There is also an increasing use of contactless smart cards for healthcare 

identification purposes. The smart cards enable administrative efficiencies in 

addition to higher assurance identification. The cards facilitate automated 

management of medical records (e.g., automated filing and retrieving of medical 

records) and mitigate human errors in managing the records. The cards are 

designed to comply with the Health Insurance Portable and Accountability Act 

(HIPAA) [12].  
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2. Financial 

The use of contactless smart cards for transportation payments was one 

of the first financial applications of contactless smart cards. This application has 

since been adopted by many countries such as the United States, Hong Kong, 

and Singapore. The Hong Kong Octopus card launched in 1997 as an electronic 

purse for public transportation is the most successful and mature implementation 

of contactless smart cards for mass transit payments [13]. Today, the Octopus 

card is also used for making payments at supermarkets and vending machines, 

and for street parking and admission to certain public facilities. 

Many banks are also replacing contact-based credit cards and debit cards 

with contactless credit cards and debit cards. These contactless cards are in 

compliance with the EMV standard and are commonly known as “chip and pin” 

cards [14]. When a customer wants to make a payment, the card terminal will 

first verify the authenticity of the card using the secret key residing in the chip. 

Once the authenticity is verified, the customer is required to enter a personal 

identification number (PIN), which will be sent to the chip for verification. If the pin 

is correct, the chip will inform the card terminal and the card terminal will approve 

the transaction. If the authenticity is not verified or the pin is incorrect, the 

transaction is denied.    

3. Access Control 

Access control is one of the most common applications of contactless 

smart cards. In these cases, contactless smart cards are used to store 

identification information and associated access privileges to control access to 

different locations. For example, contactless smart cards are used by hotels to 

control the access of hotel guests to different facilities in the hotel. Average 

guests may only be able to access their own room while privileged guests may 

have additional accesses to the gymnasium and business lounge. For more 

stringent access control to sensitive or classified premises, the cards can also 

store biometric information to further strengthen the authentication process 
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E. THREATS AND VULNERABILITIES 

Even though contactless smart cards provide considerable convenience to 

the users because they do not require the users to manually insert smart cards 

into the card terminals, there are inherent threats to the contactless feature (i.e., 

over the air communication between the smart cards and the card terminals) and 

vulnerabilities in the systems that can be exploited by attackers. 

Examples of threats include eavesdropping, impersonation, denial of 

service (DOS), replay, and radio frequency analysis attacks. Examples of 

vulnerabilities include unprotected communications, use of protocols with weak 

security features, and poor system design and/or implementation.  

1. Eavesdropping 

Eavesdropping is the simplest way to attack a contactless smart card. 

Even though the nominal operating range between some contactless smart cards 

and card terminals may only be 10 cm, the attacker is still able to listen passively 

to the over the air communications from a distance using high-gain directional 

antennas [15]. Using this form of attack, the attacker can capture sensitive 

personal information (e.g., biometric information) that is exchanged between the 

smart cards and the card terminals.  

Eavesdropping is an attack on the confidentiality of the information and is 

effective on systems where information is exchanged in the clear (i.e., not 

encrypted) which the attacker can easily capture and read. If the information is 

encrypted before sending, the attacker will require more sophisticated 

cryptanalytic or key discovery techniques to decrypt the ciphertext. If strong 

ciphers and sound key management are employed, the attack may be completely 

thwarted.   

2. Impersonation 

Impersonation, in the form of covert transaction attacks, is the biggest 

threat to contactless smart card systems as the user is unsure whether he is 
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interacting with a legitimate card terminal since the user is not required to interact 

physically with the card terminal [16]. Even if the user is interacting physically 

with the card terminal, the user may not be able to identify the differences 

between a genuine and a well-fabricated counterfeit card terminal.  

There are many types of covert transactions. Examples include fraudulent 

merchants using illicit card terminals to interact with genuine cards to process 

unauthorized transactions, or fraudulent merchants processing multiple 

transactions concurrently. This attack has been used many times by the 

installation of fake Automatic Teller Machines (ATMs) that result in the 

unintended exposure of ATM cardholder authentication credentials (e.g., PIN).  

These covert transactions are attacks on the integrity of the system and 

are effective on systems where there is no mutual authentication. In most 

contactless smart card systems, there is usually only unidirectional authentication 

where the smart card is required to authenticate to the card terminal but the card 

terminal is not required to authenticate to the smart card. In these systems, the 

fraudulent merchant can use a fake card terminal to interact with genuine cards. 

If there is mutual authentication, the smart card will be able to determine that the 

card terminal is not genuine and terminate the transaction. 

3. Denial of Service (DOS) 

All wireless communications, including contactless smart cards, are 

susceptible to jamming. Random (noise) signals can be transmitted at the same 

frequency as the communication signals that inhibit the receiving antennas’ 

ability to interpret the data, resulting in DOS. Incomplete transactions may tie-up 

the resources of the card terminal, causing the card terminal to be incapable of 

handling more transactions and resulting in DOS as well.   

DOS is an attack on the availability of the system. The only means to 

prevent jamming is to place the system in a Faraday cage, which is infeasible. 

However, systems can be designed to minimize the effect of jamming such as 
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allowing for the expeditious clearing of incomplete transactions upon timeout in 

order to free the card terminal resources for more transactions. 

4. Relay Attacks 

Relay attack is used to trick the reader into communicating with a victim 

smart card that is very far away. The basic relay attack system consists of a 

ghost (i.e., a fake card) and a leech (i.e., a fake card reader) to create 

bidirectional communications between the victim’s smart card and a real card 

terminal for transactions. The ghost is used to establish communication between 

a fake smart card and a real card terminal while the leech is used to establish 

communication between a real smart card and a fake card terminal. This relay 

allows bidirectional flow of information between the victim’s smart card and the 

real card terminal to make transactions. The basic system setup for relay attack 

is shown in Figure 1. A typical relay attack is to charge someone else’s credit 

card for a purchase [17]. 

 

Figure 1.   Basic System Setup for Relay Attack [18] (modified) 

Relay attack is an attack on the integrity of the system and has serious 

security implications as the attacker is able to circumvent most cryptography 

techniques since the attacker does not need to interpret the information that is 

exchanged. The attackers only need to relay and replay the information and 

ensure that the genuine smart cards and the card terminals receive what they are 
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expecting. The basic countermeasure to prevent a relay attack is to enforce a 

maximum response time or to use distance-bounding protocols. Yet, while 

distance-bounding protocols are the most effective countermeasure, these 

protocols require accurate estimates of the distance between the card and the 

card terminal, which are hard to implement and hence, these protocols are not 

commonly used [18].    

5. Radio Frequency Analysis 

Radio frequency analysis is a side channel attack that is a mixture of 

power analysis and electromagnetic analysis. This attack measures the 

variations in the electromagnetic field surrounding the smart card while it is in 

operation in order to derive the information that the smart card is processing. 

This is possible because the electromagnetic field surrounding the smart card 

varies according to the power consumed by the smart card, which is dependent 

on the type of information or particular operation that the smart card is 

processing. Hence, by performing reverse engineering, the variations in the 

electromagnetic field can be used to determine the variations in the power 

consumption and this data in turn can be used to infer the information that the 

smart card is processing.  

Radio frequency analysis is an attack on the confidentiality of the system 

and exploits the vulnerability of  contactless communication which is that it is 

easy to intercept. A powerful countermeasure to this attack is to use message 

and exponent randomization when programming contactless smart cards such 

that useful information cannot be easily derived just by analyzing the variations in 

the electromagnetic field [16].    

F. SECURITY REQUIREMENTS 

As described in previous sections, the enormous benefits of employing 

contactless smart card systems drive the increasing use of these systems. 

However, there are also security concerns regarding the use of these systems 

that need to be addressed. Security controls should be in place to protect the 
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confidentiality, integrity, and availability (CIA) of smart card systems and to 

mitigate the security risk associated with the use of these systems. As most of 

the attacks discussed previously exploit the vulnerabilities in the contactless 

communication system, this thesis will focus on the security protection of  

contactless communication (i.e., protecting the bits in transit between the smart 

cards and the card terminals). 

1. Confidentiality 

Confidentiality is the assurance that there is no unauthorized disclosure of 

information and protects against eavesdropping. The common approach to 

information confidentiality is to use strong cryptography techniques to encrypt the 

information before sending it, so that the information is not sent as plaintext. 

Alternatively, another confidentiality tactic is to perform the contactless 

transactions in a shielded room containing only trusted equipment operated by 

trusted subjects. This approach is very costly and is only adopted by 

organizations that need to protect very sensitive and classified contactless 

transactions.  

2. Integrity 

Integrity is the assurance that there is no unauthorized modification of 

information and there is information authenticity. To ensure integrity in 

contactless smart card systems, the information exchange needs to be checked 

for improper modifications and there is a need for mutual authentication between 

the smart cards and the card terminals. The common approach is to use strong 

cryptographic techniques. For example, a digital fingerprint of the information that 

is sent can be used to check for improper modifications. This requires the 

creation of secret keys that are needed to provide reliable indicators of the 

identities of the devices at both ends of the contactless session. Overall, integrity 

protects against unauthorized modifications, replay attacks, and covert 

transactions.   
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3. Availability 

Availability is the assurance that authorized users, processes, and devices 

have timely and reliable access to information and services. Unlike confidentiality 

and integrity, cryptographic techniques cannot be used to ensure availability. 

Availability can only be improved by having a redundant set of systems. 

Defensive programming can also be used to improve availability by programming 

the card terminals to purge incomplete transactions upon timeout in order to free 

resources for more transactions and mitigate attempted DOS attacks.         

4. Non-repudiation 

Non-repudiation is the assurance that an individual cannot deny having 

participated in the transactions. Asymmetric cryptography (i.e., public key 

cryptography, or PKC) is a possible method to achieve electronic non-

repudiation. PKC can be used to prove that a smart card is used in a transaction, 

but PKC cannot prove that it is the rightful owner making the transaction, as there 

is a possibility that an attacker could have obtained a victim’s smart card.  

To counter this threat, PKC needs to be coupled with additional 

mechanisms such as manual verification of the identity of the presenter of the 

card by having the operator verify the name printed on the card against a form of 

ID. Additionally, it is possible to employ multi-factor authentication in a manner 

such that the card carrier needs to prove his/her identity to the card before the 

card will enable PKC-based authentication.  

Another alternative is record the entire transaction so that there is video 

evidence that the individual is making the transaction. This is not desirable due to 

the large overhead incurred in maintaining the equipment and management of 

the data.       
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III. OPACITY 

A. OVERVIEW 

The OPACITY protocol is an open source1 privacy-enhanced protocol. 

The protocol is compliant with the guidelines of cryptography and smart card 

standards and recommendations , which require secure contact or contactless 

transactions between a smart card and a card terminal (i.e., reader). The protocol 

is suitable for use in commercial and military authentication applications, such as 

physical access control to premises, and logical access control to laptops and 

desktops, as well as ticketing and mass transit applications [19]. The protocol 

leverages standard cryptographic techniques to perform authentication and to 

protect the confidentiality and integrity of the data exchanged between the smart 

card and the card terminal. The protocol has two modes of operation, which are 

the OPACITY Full Secrecy (OPACITY-FS) mode and the OPACITY Zero Key 

Management (OPACITY-ZKM) mode. Both of these modes are able to support a 

range of cipher suites. The operational modes and the cipher suites are 

configurable to the needs of the operating environment. This thesis will focus on 

the OPACITY-FS mode optimized for contactless transaction.  

A typical setup of the smart card and the card terminal using OPACITY 

protocol is shown in Figure 2. The card terminal consists of the client application 

and the Secure Authentication Module (SAM). The client application acts as the 

interface device to relay data between the smart card and the SAM while the 

SAM is responsible for all the security functions such as authentication, as well 

as the encryption and decryption of data. 

                                            
1 The OPACITY protocol is registered with the U.S. Patent and Trademark Office as a 

statutory invention to prevent mercenary gains from the commercial sale of this protocol.  
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Figure 2.   Setup of Smart Card and Card Terminal Using OPACITY 
Protocol [19] (modified) 

B. STANDARDS / RECOMMENDATIONS 

The OPACITY protocol is compliant with the guidelines of many 

cryptography and smart card standards and recommendations. Examples include 

FIPS 140–2 [20], NIST SP 800–56A [21], NIST SP 800–57 Part 1 [22], as well as 

ISO 24727–4 [23] and ISO 7816–4 [24]. 

C. GENERAL CHARACTERISTICS 

This section will discuss the general characteristics of the OPACITY 

protocol. These characteristics include single factor authentication, asymmetric-

based authentication and authorization support.  

1. Single Factor Authentication Protocol 

Authentication protocols are designed primarily to perform authentication. 

Authentication is the process of reliably verifying the claimed identity of a subject 

(i.e., a human or person) or an entity (i.e., a non-person entity). Mutual 

authentication ensures that both of the subjects or end-entities involved in a 

particular transaction will authenticate each other prior to the transfer of any 

sensitive information or execution of any access-controlled operation.  
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Person authentication and entity authentication are based on different 

factors of authentication in order to prove the claimed identity. Person 

authentication is based on proving possession of something known (e.g., 

passwords), something possessed (e.g., tokens), or something biometrically 

unique (e.g., fingerprints). A combination of factors can also be employed to 

achieve multi-factor authentication (e.g., requiring both a token and a PIN). Entity 

authentication is based on proving possession of something (e.g., shared 

secrets).   

The OPACITY protocol is a single factor authentication protocol that is 

based on proving possession of something possessed, which is a valid smart 

card. As all the required authentication information (e.g., identity and 

cryptographic keys) is stored in the smart card, the claimant will only need to 

present the smart card to the card terminal for authentication. In addition, as the 

protocol does not require the claimant to activate the authentication information 

stored in the smart card, the claimant will obtain successful authentication, even 

if the claimant is not the rightful owner of the smart card, as long as the claimant 

proves possession of a valid smart card. 

In this case, the smart card is also known as a bearer token. A bearer 

token is a token in which any claimant in possession of a valid token is able to 

achieve successful authentication even if the claimant is not the rightful owner of 

that token. Hence, the authentication protocol may be seen as authenticating the 

smart card (i.e., entity authentication) rather than authenticating the person in 

possession of the smart card (i.e., person authentication).  

2. Asymmetric-Based Authentication  

There are many different types of authentication protocols. The most 

common type of authentication protocol is the password-based authentication 

protocol. The password-based authentication protocol is based on something 

known and makes use of a pre-established shared secret between the subjects 

or entities involved in the transaction as the basis for authentication. This 
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protocol is also known as symmetric authentication protocol. The converse of 

symmetric authentication protocol is asymmetric authentication protocol. An 

example of asymmetric authentication protocol is a protocol that uses PKC to 

perform authentication. 

The OPACITY protocol is an asymmetric-based authentication protocol 

that uses PKC [19]. Each smart card and card terminal contains a Card Verifiable 

Certificate (CVC), a list of root public keys and a static private authentication key. 

The CVC functions as the public key certificate and is defined according to the 

X.509 format for public key certificates. The CVC contains the identity of the 

smart card or the card terminal, the corresponding public key, and other 

information. The CVC is digitally signed using the Elliptic Curve Digital Signature 

Algorithm (ECDSA). During authentication, the root public keys are used to verify 

the digital signature to determine the integrity of the CVC. Before the identity and 

the public keys on the CVC are used, the corresponding private keys and other 

information are used to derive symmetric shared secrets and the authentication 

cryptogram. The authentication cryptogram is the Message Authentication Code 

(MAC) tag that is used by the card terminal to assess if the authentication 

process is successful  

3. Authentication versus Authorization 

Authentication is usually the first step of most sensitive and classified 

transactions, followed by authorization procedures to verify if the claimants are 

allowed access to the requested information, systems, or physical infrastructure. 

A successfully authenticated claimant may not be granted access to the 

requested resource due to access controls put in place by the resource owner’s 

security policy. Thus, it is important not to confuse authentication with 

authorization as each accomplishes a different function.  

The OPACITY protocol only performs authentication and does not perform 

any authorization function. However, the authentication information can be used 
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to support authorization. For instance, the verified identity information can be 

relied upon to cross-reference against an access control list (ACL) to determine if 

access should be allowed. 

D. FEATURES 

The OPACITY protocol is designed with a multitude of features intended 

to optimize the security and performance of the protocol. This section will provide 

an overview of these features.  

1. Security Features 

The protocol provides security features such as mutual authentication and 

end-to-end protection of the information exchanged between the smart card and 

the card terminal with forward secrecy and identity privacy [19]. These features 

help to mitigate the security risk of wireless communications against attacks such 

as impersonation, identity leak, eavesdropping, and modification attacks.  

a. Authentication 

The protocol is capable of performing mutual authentication in the 

OPACITY-FS mode to prevent impersonation attacks. In the OPACITY-ZKM 

mode, the protocol only performs unidirectional authentication. The card terminal 

authenticates the smart card but the smart card does not authenticate the card 

terminal.    

In general, the OPACITY authentication process involves key 

agreement, key derivation, and key confirmation steps. The steps are performed 

using FIPS-approved processes specified in NIST SP800–56A. Key agreement 

is based on the C(1,1) steps using the Elliptic Curve Diffie-Hellman (ECDH). 

OPACITY-FS mode follows a sequence of two C(1,1) steps while the OPACITY-

ZKM mode follows a sequence of one C(1,1,) step. The Key Derivation Function 

(KDF) and key confirmation steps are the same for the two modes of operation. 

They are based on a predefined KDF and the C(0,2) Scheme with Unilateral Key 

Confirmation provided by the scheme responder to the scheme initiator. The 
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scheme responder is the smart card while the scheme initiator is the card 

terminal. The OPACITY-FS authentication transaction diagram is presented in 

Part 0 of this chapter.      

b. End-to-End Protection with Forward Secrecy  

The protocol provides end-to-end protection of the data exchanged 

between the smart card and the card terminal with forward secrecy. End-to-end 

protection protects the confidentiality and integrity of the data and prevents 

eavesdropping and modification attacks when the transaction is in progress. 

Protection is achieved using FIPS-approved keyed cryptographic mechanisms 

such as the Advanced Encryption Standard (AES) cipher to encrypt the data and 

the Secure Hash Algorithm (SHA) to compute the hashes of the data. The 

session keys for encryption and hashing are derived using the predefined KDF 

specified in NIST SP 800–56A.  

Forward secrecy enhances security by minimizing the probability 

that the plaintext can be recovered from captured ciphertext at some later time by 

the attacker. This protection is accomplished by zeroing all derived session keys 

once they are no longer used. However, the protocol does not achieve perfect 

forward secrecy (PFS). This is because in order to achieve PFS, the session 

keys should not be derivable even if one obtains the long-term static keys that 

reside on the smart card and the card terminal [25]. As the session keys are 

derived from the long-term keys for OPACITY protocol, one may recover the 

session keys if the long-term keys are known using mechanisms such as brute 

force attack.  

c. Identity Privacy 

The protocol protects the identity of the smart card and/or card 

owner from identity leak. This prevents the attacker from knowing the smart card 

or owner identity and associating that identity to any particular transaction. 
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This protection is achieved by encrypting the smart card’s CVC with 

a symmetric key before transmitting it from the smart card to the card terminal. 

The derivation of the symmetric key involves using the public key of the card 

terminal to derive a shared secret using ECDH. Based on ECDH, only a valid 

card terminal with the corresponding private keys and the same set of ECC 

domain parameters may derive the same shared secret and derive the symmetric 

key to decrypt the CVC. Even though the attacker may try to use brute force on 

the encrypted CVC, this approach is computationally infeasible due to the key’s 

length. 

2. Performance Features 

The protocol is designed with features such as persistent binding, anti-

tearing, and synchronization, as well as simple integration to improve the 

performance, fault tolerance, and interoperability of the protocol into existing 

systems [19].  

a. Persistent Binding 

The purpose of the persistent binding (PB) feature is to save on the 

key agreement step for the next transaction. In the current transaction, the 

protocol computes the shared secrets and one time card identifiers (i.e., the PB 

records) for deriving the session keys for the next transaction and stores it in the 

PB table on the smart card and the card terminal, respectively. This is performed 

for each pair of smart card and card terminal that has completed a successful 

authentication and has this feature enabled. This feature improves the 

transaction time for the next transaction.    

b. Anti-tearing and Synchronization 

The purpose of the anti-tearing and synchronization feature is to 

facilitate error recovery. An error can occur when either the smart card or the 

card terminal fails to receive a response from the other party due to a failed 

connection or when there is de-synchronization between the PB records that are 
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stored in the smart card and the card terminal. In the event of a failed connection, 

the protocol resumes processing from the last successfully completed transaction 

point (i.e., anti-tearing). In the event of de-synchronization in the PB records, the 

protocol recovers by repeating the full authentication process (i.e., as if it is the 

first time an  authentication is performed for a particular smart card and card 

terminal). This feature improves the fault tolerance of the protocol.  

c. Simple Integration and Interoperability 

The protocol is designed to facilitate simple integration between the 

client application and the SAM in the card terminal, as well as between the smart 

card and the card terminal. The SAM is responsible for performing all the security 

functions (e.g., authentication and encryption of messages) while the client 

application acts as the interface device in order to relay data between the smart 

card and the SAM. As such, minimal changes need to be made to the client 

application in order to use this protocol. In addition, the protocol adheres to the 

ISO 24727–4 and ISO 7816–4 communication framework that facilitates 

interoperability between the smart cards and the card terminals from different 

vendors.      

E. MODES OF OPERATION 

The OPACITY protocol has two primary modes of operation:  OPACITY-

FS mode and OPACITY-ZKM mode. The OPACITY-FS mode is optimized to 

provide secure contactless transactions while the OPACITY-ZKM mode is a 

lightweight option optimized for both contact and contactless transactions where 

key management is an issue or where fast transactions are favored over more 

secure transactions [19].    

1. OPACITY-FS 

The OPACITY-FS mode is optimized to provide secure contactless 

transactions. In this mode of operation, the protocol performs mutual 

authentication. It also provides end-to-end protection, as well as forward secrecy 



 25 

for sensitive data that are exchanged between the smart card and the card 

terminal. During the transaction, the identity of the card owner is protected from 

unauthorized leakage.  

2. OPACITY-ZKM 

The OPACITY-ZKM mode is a lightweight option optimized for both 

contact and contactless transactions where key management is an issue or 

where fast transactions are required. In this mode of operation, the card terminal 

does not need to possess any static key except for the root public key in order to 

verify the Card Verifiable Certificate Signature. In addition, this mode is faster as 

it requires only a single C(1,1) step for key agreement as compared to two C(1,1) 

steps for key agreement for OPACITY-FS. However, there is only unidirectional 

authentication. The card terminal will authenticate the smart card but the smart 

card will not authenticate the card terminal. Hence, this mode is only suitable for 

use in environments where the card terminals are trusted.  

F. CIPHER SUITES 

The modes of operations are able to support a range of cipher suites [19] 

as shown in Table 1. 

Table 1.  Cipher Suites Supported By The OPACITY Protocol 

Modes Fast ZKM 
only 

FS/ZKM Strong 
Key 

Transport 

Strong FS Government 
Classified 

Encryption 
or Mac 

AES 128 AES 128 AES 256 AES 192 AES 256 

Smart Card 
CVC 
Signature 

ECDSA 
224 

ECDSA 
256 

ECDSA 
256 

ECDSA 
384 

ECDSA 384 

Card 
Terminal 
CVC 
Signature 

N.A. ECDSA 
256 

ECDSA 
384 

ECDSA 
384 

ECDSA 384 

Smart Card ECDH 224 ECDH 256 ECDH 256 ECDH 284 ECDH 384 
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Key 
Agreement 

Card 
Terminal 
Key 
Agreement 

ECDH 224 ECDH 256 ECDH 256 ECDH 284 ECDH 384 

Hashing SHA 1 SHA 256 SHA 384 SHA 384 SHA 384 

Nonce 16 bytes 16 bytes 24 bytes 24 bytes 32 bytes 

G. OPACITY-FS AUTHENTICATION  

The OPACITY-FS authentication process [19] commences with the card 

terminal initiating the authentication request. When the smart card receives the 

authentication request, the smart card will verify the integrity of the authentication 

information that is received from the card terminal before using the authentication 

information to derive the authentication cryptogram. The authentication 

cryptogram is then sent to the card terminal with the smart card authentication 

information. Likewise, when the card terminal receives the smart card 

authentication information, the card terminal will verify the integrity of the 

authentication information before using the authentication information to derive a 

local copy of the authentication cryptogram. If the two authentication cryptograms 

match, the authentication is successful. Otherwise, the authentication is 

unsuccessful.  

Prior to the authentication process, the issuer must ensure that the smart 

card and the card terminal are preloaded with the required authentication 

information. The authentication process, as shown in Figure 3, consists of four 

main steps: 

− Step 0: Preloading of required authentication information 

− Step 1: Card terminal (Host) initiates authentication request  

− Step 2: Smart card (ICC) generates authentication cryptogram 

− Step 3: Card terminal (Host) verifies authentication cryptogram 
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Figure 3.   The OPACITY Protocol General Authentication Process 

1. Step 0: Preloading of Required Authentication Information 

The smart card (i.e., ICC) and the card terminal (i.e., Host) need to be 

preloaded with the required authentication information. The authentication 

information includes the CVC, the private authentication key, other party root 

public keys for verifying the CVC digital signature, and the ECC domain 

parameters. The preloaded authentication information is shown in Figure 4. 

Card Terminal/ Host Smart Card / Integrated Circuit Card 

Step 0: Preloading Step 0: Preloading 

Authentication Request 

Step 2: Generates 
Authentication 
Cryptogram 

Authentication Cryptogram 

Step 1: Initiates 
Authentication 

Step 3: Verifies 
Authentication 
Cryptogram 
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Figure 4.   Preloaded Authentication Information 

2. Step1: Card Terminal (Host) Initiates Authentication Request 

The Host initiates the authentication process by sending the authentication 

request to the smart card. Before sending the authentication request, the Host 

will generate a pair of ephemeral keys, d_eH and Q_eH, using ECC key pair 

generation. d_eh is the private ephemeral key and Q_eH is the public ephemeral 

key. The Host CVC (C_H) and Q_eH, are sent as part of the authentication 

request. The authentication request also includes a control byte (CB_H) to 

indicate whether to use the PB feature. This step is shown in Figure 5.  
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Figure 5.   Card Terminal Initiates Authentication Request [19] (modified) 

3. Step 2: Smart Card (ICC) Generates Authentication Cryptogram 

Upon receiving the authentication request from the Host, the ICC will 

perform a series of checks and processing, which include validating the Host 

CVC, verifying the PB feature and key establishments before generating the 

authentication cryptogram and forwarding it to the Host. 

a. Validates Host CVC 

The ICC will verify the digital signature on the C_H using the Host 

root public keys (i.e., Q_rootH) upon receiving the authentication request from 

the Host. Once the digital signature is verified, the ICC will extract the Host 

identity (i.e., ID_sH) and Host public authentication key (Q_sH) from the C_H. 

This step is shown in Figure 6. 

 

Figure 6.   Validate Host CVC [19] (modified) 

b. Verifies Persistent Binding Feature 

Next, the ICC will verify the PB feature by checking the CB_H. In 

general, three possible situations will result from this check. The first situation is 
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that the CB_H is not set to use the PB feature. The second situation is that the 

CB_H is set to use the PB feature but the corresponding persistent record cannot 

be found in the ICC’s PB database. This will occur when it is the first transaction 

for the ICC-Host pair or when there is an error saving the persistent data in the 

last transaction. The final situation is that the CB_H is set to use the PB feature 

and the corresponding persistent record can be found in the PB database.  

In the first and second situations, the ICC will perform the full 

authentication process. The ICC will verify that the Q_eH is generated using the 

same  ECC domain parameters before generating its own ephemeral key pairs. It 

will then perform a sequence of two C(1,1) key agreement steps to derive shared 

secret Z1 and Z using ECDH as shown in Figure 7. Key K1 is used to encrypt the 

ICC CVC to protect the ICC’s or card owner’s identity. The keys, K1 and K2, are 

generated using a pre-defined KDF.  

In the third situation, the ICC will skip the key agreement process 

and use the shared secret Z and one time ICC identification computed in the 

previous transaction as shown in Figure 8. In this case, the ICC assumes that the 

Host also has a valid persistent record and there is no need to send the ICC 

CVC. Instead, a nonce is generated and sent in place of the ICC CVC. The 

nonce is also set as key K2.          
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Figure 7.   ICC PB Feature Check Case 1 and Case 2  [19] (modified) 
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Figure 8.   ICC PB Feature Check Case 3  [19] (modified) 

c. Derives Session Keys and Generates Authentication 
Cryptogram 

After completing the PB feature verification process, the ICC will 

derive the session keys and generate the authentication cryptogram (i.e., 

AuthCryptogram_ICC) as shown in Figure 9. The authentication cryptogram is 

generated using the AES-based MAC algorithm. In addition, the ICC will also 

store the shared secret (i.e., NextZ) and one-time identification (i.e., 

NextOTID_ICC) for the next transaction in the PB database if the PB feature is 

enabled for the ICC as well as the Host.   

The ICC will then send the AuthCryptogram_ICC, ICC control byte 

(i.e., CB_ICC) along with the ICC’s authentication information to the Host. 
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Figure 9.   Derive Session Keys and Authentication Cryptogram [19] 
(modified) 
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3. Step 3: Card Terminal (Host) Verifies Authentication 
Cryptogram 

Upon receiving the authentication response from the ICC, the Host will 

perform a series of checks and processing, which include verifying the PB 

feature and key establishments before generating a local copy of the 

authentication cryptogram and verifying if the local copy of the authentication 

cryptogram matches the authentication cryptogram sent by the ICC. 

a. Verifies Persistent Binding Feature 

When the Host receives the respond to the authentication request, 

the Host will proceed to verify the PB feature. Similar to the ICC PB feature 

verification outcomes, there are three cases that may result from this action. The 

first case is that the CB_ICC is not set to use the PB feature. The second case is 

that CB_ICC is set to use the PB feature but the persistent record cannot be 

found in the Host’s PB database. The third case is that the CB_ICC is set to use 

the PB feature and the corresponding persistent record can be found.  

In the first case, the Host will perform the full authentication process 

as shown in Figure 10. The Host will verify that Q_eICC is generated using the 

same ECC domain parameters. Once verified, the Host will  derive the first 

shared secret, Z1, to derive secret key K1, which is then used to decrypt the 

encrypted c. Next, the Host will verify the digital signature of the C_ICC using the 

list of ICC root public keys (i.e., Q_rootICC) and from there it will derive the 

second shared secret, Z.   

In the second case, the Host will send a request to the ICC to 

restart the authentication process and perform the full authentication process as 

shown in Figure 11. This will occur when there is a de-synchronization between 

the PB databases and the Host does not have the Z and OTID_ICC that was 

computed in the previous transaction to continue with the authentication process. 
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In the third case, the Host will use the Z and OTID_ICC in the 

persistent record to proceed with the authentication process as shown in 

Figure 12. 

 

Figure 10.   Host PB Feature Check Case 1 [19] (modified) 
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Figure 11.   Host PB Feature Check Case 2 [19] (modified) 

 

Figure 12.   Host PB Feature Check Case 3 [19] (modified) 

b. Derives Session Keys and Verifies Authentication 
Cryptogram 

After completing the PB verification process, the Host will derive the 

session keys and generate a local copy of the authentication cryptogram (i.e., 

AuthCryptogram_H) using the same input information for the AES-based MAC 

algorithm as the ICC, as shown in Figure 13. If AuthCryptogram_H is the same 

as AuthCryptogram_ICC, authentication is successful. Otherwise, authentication 

is not successful and an error message is returned. The authentication 

cryptogram verification process follows the C(0,2) Scheme with Unilateral Key 

Confirmation provided by scheme responder to scheme initiator. 
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After a successful authentication, the Host will store the shared 

secret (i.e., NextZ) and one-time identification (i.e., NextOTID_ICC) for the next 

transaction in the PB database as long as the PB feature is enabled for the Host 

as well as the ICC.  

 

Figure 13.   Host Verifies Authentication Cryptogram [19] (modified) 
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H. STRENGTHS AND LIMITATIONS  

This section presents an analysis of the strengths and limitations of the 

OPACITY protocol. This analysis will be conducted at the protocol level and will 

not address any details of the cryptographic algorithms that are used in the 

protocol, such as SHA and AES. As a starting point, it is assumed that these 

heavily vetted and NSA-approved algorithms function securely “as advertised.” 

1. Strengths 

a. Asymmetric Cryptography 

The OPACITY protocol is an asymmetric-based authentication 

protocol that uses PKC. PKC provides numerous advantages:  

(1) Minimize key distribution. One of the key advantages 

of PKC is that it minimizes the key distribution problem that is so prevalent with 

symmetric cryptography. In a symmetric key system of n users, if all the n users 

are required to communicate securely with one another, each user must have (n 

–1) secret keys. This amounts to a total of n(n – 1)/2 keys that need to be 

generated and distributed securely among the n users. With asymmetric 

cryptography, the key distribution “problem” is reduced to how each of the n 

users may obtain his/her private key securely. This is often done in-person at an 

office approved for this purpose. Once each of the users has obtained his/her 

respective private key and corresponding certified public key, there is no key 

distribution problem per se, as the public keys can be stored and 

shared/distributed without any protection.  

(2) No need for pre-defined shared secret. Another 

advantage of PKC is that there is no need to predefine any shared secrets for 

authentication [26]. Key agreement algorithms such as ECDH can be used to 

establish shared secrets to derive session keys on the fly during the 

authentication process. This also helps to minimize the distribution problem 

described in the previous sub-section.  
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(3) Strong identification. A third advantage of PKC is its 

ability to use a digital signature. A digital signature provides two important 

functions [26]. Firstly, a digital signature proves who generated the information. 

Secondly, a digital signature protects against unnoticed information modification.  

For OPACITY protocol, the CVC is signed by the issuer and 

provides strong assurance that the identification information and public 

authentication key are authentic and have not been modified.  

b. Use of Different Session Keys 

In the OPACITY-FS mode, different session keys are used for 

encryption, hashing (i.e., MAC), and to generate the authentication cryptogram. 

The use of different keys for encryption and hashing helps to mitigate plaintext—

ciphertext pair attacks. In addition, the use of different keys also helps to mitigate 

modification attacks as the attacker needs to crack both keys in order to perform 

a successful attack, which is computationally impossible given the short 

transactional time.       

c. Mutual Authentication and End-end Protection with 
Forward Secrecy and Identity Privacy 

The OPACITY protocol performs mutual authentication and 

provides end-end protection, mitigating a number of vulnerabilities in contactless 

transactions. For instance, the protocol is resistant against eavesdropping, 

modification, impersonation, and most man-in-the-middle attacks. In addition, the 

protocol also provides identity privacy by encrypting the smart card’s ICC before 

transmitting.    

2. Limitations 

a. Asymmetric Authenticating 

Despite the numerous advantages of asymmetric cryptography and 

PKC, there are also limitations.  
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(1) Higher latency. A key limitation of asymmetric 

cryptography is that it has a slower performance than symmetric cryptography. 

For this reason, there is research interest in developing hybrid authentication 

protocols that use a mixture of asymmetric and symmetric techniques. 

(2) No CVC revocation. Another limitation of OPACITY 

protocol is that there is no CVC revocation functionality in the current design [19]. 

The purpose of the CVC revocation functionality is to mark the CVC as “invalid” 

or “revoked” so that the public keys (i.e., the user’s public keys contained in the 

CVC and the card’s public authentication key), as well as the corresponding 

private keys, can no longer be used in the event of loss or theft of a smart card. 

The issuer will only need to regenerate, issue, and update the backend system 

with the new public keys, while minimizing changes to the backend system. 

Without the CVC revocation functionality, the user identification information and 

associated authorization privileges, in addition to the keys, need to be removed 

from the backend system, regenerated, issued, and updated to the backend 

system, incurring substantial changes to the backend system.  

b. Single Factor Authentication 

This protocol is a single factor (i.e., the subject has the card) 

authentication protocol and it is not able to achieve the security confidence of the 

multi-factor authentication protocol.  

Based on the guidelines provided in NIST SP 800–116 [27] for 

physical access control system (PACS), this protocol provides some confidence 

for PACS and is only suitable for physical access control to controlled areas. In 

order to be suitable for use to limited or exclusive areas, the protocol has to be 

combined with other factors (i.e., something you know or something you are) of 

authentication to achieve high or very high confidence.  

c. Bearer token 

(1) Does not achieve user on-repudiation. The 

application of this protocol alone without other security mechanisms makes the 
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smart card a bearer token. As such, anyone with mere possession of a valid 

smart card is able to be successfully authenticated. Hence, the protocol does not 

achieve user non-repudiation even though the protocol uses PKC. The protocol 

only achieves non-repudiation indicating that a particular smart card is used. To 

achieve user non-repudiation the protocol needs to be combined with other 

factors of authentication, such as explicit user activation of the smart card 

through biometric means, before the smart card can be used for authentication. 

Since biometrically unique features uniquely identify each individual, the 

individual cannot deny making the transaction when the smart card is used for 

authentication, therefore achieving user non-repudiation. 

(2) No proof of control of token. Based on the guidelines 

provided in NIST SP 800–63–1 [28] for electronic authentication, one of the 

criteria to achieve a minimum assurance level for electronic authentication is that 

the claimant must be able to prove possession and control of the token that is 

used in the authentication process. Based on this guideline, the protocol does not 

achieve the minimum assurance level as the protocol does not require the 

claimant to prove control of the smart card 
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IV. PLAID 

A. OVERVIEW 

Developed by Centrelink, an Australian Government Statutory Agency, the 

PLAID protocol is a common, non-proprietary smartcard authentication protocol 

that is suitable for both PACS and logical access control (LACS). This protocol is 

designed to bridge the gap between existing RFID-based technologies that offer 

speed but lack the necessary security features, and PKI-based authentication, 

which is cryptographically secure but lacks the speed necessary in many 

contactless smartcard scenarios. The PLAID protocol utilizes a hybrid standards-

based symmetric and asymmetric cryptography to protect data transmissions 

between the smartcard and terminal devices. In addition, this protocol is 

designed to perform high strength mutual authentication in less than 0.3 of a 

second, thus preventing the leakage of any form of information that might prove 

useful for an attacker. 

According to the developers, stringent evaluations have been conducted 

by renowned cryptographic organizations in the hope that by improving 

consumer confidence the number of commercial end-users and vendors that 

implement the PLAID protocol within their products will improve. The PLAID 

protocol is an extremely versatile protocol and can be customized to support 

either single or dual factor authentication.  

B. STANDARDS/RECOMMENDATIONS 

As the PLAID protocol is relatively new, it is not formally recognized as a 

protocol that adheres to international standards such as ISO 24727–4 or 

recommendations made in FIPS 140–2. However, with the latest version of the 

PLAID Specification (version 8), enhancements and simplifications have been 

made to support ISO 24727 parts 3 and 6. The current version of the protocol 

has been formally mapped to the Australian Standard (AS 5185–2010) which will 

subsequently be encompassed as part of the ISO/IEC standard [5]. As the PLAID 
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protocol has the necessary components required to provide strong authentication 

and security for both PACS and LACS implementation, it is still able to meet the 

criteria set by both the ISO/IEC 14443 and ISO/IEC 7816 standards. 

C. GENERAL CHARACTERISTICS 

This section will discuss the general characteristics of the PLAID protocol. 

1. Multi-Factor Authentication  

The PLAID protocol is extremely flexible in its implementation and can 

support both single-factor or multi-factor authentication. The primary factor of 

authentication is proof of possession of something the user has (i.e., a valid 

smart card). Multi-factor authentication is achieved by incorporating two 

additional factors of authentication, which is something the user knows (e.g., a 

PIN) and something the user is (e.g., fingerprint), in addition to proof of 

possession of a valid smart card. Multi-factor authentication provides higher 

confidence in the asserted identity of the claimant.        

2. Symmetric and Asymmetric Key Algorithms 

Symmetric key algorithms are a class of algorithms that utilize the same 

cryptographic keys for both encryption and decryption of data. These keys 

represent a shared secret between the parties involved in the exchange of 

information. One drawback however, is that both parties have access to the 

secret key, which not only increases the likelihood of compromise, but also 

precludes its usage in applications that require the security objective of non-

repudiation. 

Asymmetric key algorithms on the other hand, refer to a class of 

algorithms that require a pair of separate keys, of which one is a secret and the 

other is public. Despite the keys being different, the two keys are actually 

mathematically related. What one key encrypts the other can decrypt. Neither of 

these keys can be used to perform both functions for any particular object, and 

therefore cannot be used in isolation. 
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For the purposes of authentication, the PLAID protocol utilizes both 

symmetric and asymmetric key algorithms. To ensure the authenticity of the 

receiving party, an asymmetric algorithm, in the form of RSA, is first used to 

encrypt certain selected identification data. Once the initial authentication has 

been established, the PLAID protocol uses symmetric encryption for all 

subsequent data transactions as it offers improvements in performance. Specific 

details of how the protocol works and the rationale for having both asymmetric 

and symmetric algorithms in the protocol will be described in the subsequent 

section.  

3. Authentication versus Authorization 

As mentioned in the previous chapter, authentication is the mechanism 

whereby a system is able to reliably identify users, while authorization is the 

mechanism by which the system determines what level of access a particular 

authenticated user is permitted (as specified in the access control portion of a 

given security policy). 

In the case of the PLAID protocol, the protocol offers both forms of 

functionalities. Authentication is accomplished through various means, such as 

ensuring the IFD is able to correctly decrypt the RSA encrypted data from the 

ICC, as well as having the IFD perform stringent checks to ensure that the ICC 

holder has entered the correct PIN or biometric profile. Depending on the 

implementation of the system, authorization is provided by checking the 

operational mode identifier (OpModeID) stored in the ICC against the access 

control system (ACS) record. For example, an implementation might utilize the 

OpModeID to grant a user physical access to rooms that are of a less sensitive 

nature while restricting them from rooms with a higher security classification, 

despite them being valid—authenticated—users. 
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D. FEATURES 

The PLAID protocol is designed with multiple features that optimize the 

security and performance of the protocol. This section will provide an overview of 

these features.  

1. Security Features 

The protocol provides security features such as mutual authentication and 

end-to-end protection of information between smart card and card terminal with 

identity privacy. Such features are useful to mitigate against the security risks 

commonly found in smart cards, such as man-in the middle (MITM) attacks, 

replay attacks and data leakages.  

a. Mutual Authentication 

The protocol is capable of performing mutual authentication to 

prevent impersonation attacks from either card or reader. In general, the 

authentication process involves key agreement, key derivation and key 

confirmation steps, which are in accordance to guidelines stipulated in the NIST 

SP800–56A and ISO/IEC 9798–2 document.  

Here, key agreement is based on the negotiation of the key sets, 

where the IFD, in the initial authentication command, gives the ICC a list of 

supported key sets in preferential order. The ICC will then utilize the most 

preferred set based on the order of priority. Next, key derivation is achieved 

when the IFD uses the diversification data to determine the final authentication 

key. This will be explained in greater clarity in the subsequent section. 

b. End-to-End Protection  

The PLAID protocol is able to provide end-to-end protection of the 

exchanged data as it utilizes a suite of FIPS-approved keyed cryptographic 

mechanisms such as RSA and AES cryptography. As an added measure, SHA is 

also used to hash data in order to derive the final authentication key. These 
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mechanisms prevent the possibility of malicious attacks as no identifiable or 

unique information is transmitted in the clear. Furthermore, the use of SHA acts 

as a countermeasure that prevents any “man-in-the-middle” device from 

modifying session data without detection. 

c. Authorization Checks 

The PLAID protocol achieves authorization via the OpModeID, 

which specifies the cardholder’s privileges. 

2. Performance Features 

The protocol is designed to be lightweight while still being 

cryptographically stronger and faster than existing authentication protocols. It 

offers performance features such as easy integration and interoperability. 

a. Simple Integration and Interoperability 

The protocol is designed using existing off the shelf symmetric and 

asymmetric algorithms, which allows for easy integration with existing systems. 

Furthermore, the fact that it is lightweight means that it can be efficiently 

implemented on current generation hardware. Previously, the use of asymmetric 

algorithms on smart cards was considered too slow to use for physical access 

control. With the PLAID protocol, authentication can be completed in as little as 

200ms. These results are not theoretical, as tests have been conducted on 

production cards to ensure that such speeds are achieved in actual practice.  

E. MODES OF OPERATIONS 

Using the two-byte ACS record that is sent to ICC in the final 

authentication command as a reference, the PLAID protocol allows for up to 

65535 operational modes. This functions similar to that of a capability list where a 

different and distinct ACS record can be verified by either (or both) the IFD or a 

backend database depending on how the system is implemented. For example, 

an individual might use the ICC for both physical and logical access. Depending 
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on the record required by the reader, the protocol is able to provide an 

authenticated record of the type required for the particular environment. The 

records could range from a Weigand number, an ICAO credential, a RFC 4122 

UUID record or even a biometric template depending on implementation. Having 

these different modes of operation supports both physical and logical access 

control in many environments.  

F. SUGGESTED KEY LENGTHS AND ALGORITHMS 

As there are often tradeoffs between key length, cryptographic options 

and speed, the versatility of the PLAID protocol allows it to be implemented with 

various key lengths, cryptographic algorithms, and modes, depending on the 

various performance requirements of the user. Table 2 presents some of the 

suggested key lengths and cryptographic algorithms: 

Table 2.  Cipher Suites Supported By The PLAID Protocol 

Symmetric 
Algorithm 

Key 
Length 
(Bits) 

Mode Asymmetric 
Algorithm 

Key 
Length 
(Bits) 

Target 
Transaction Time 

(ms) 

AES 128 CBC RSA 1024 200 

AES 192 CBC RSA 1536 350 

AES 256 CBC RSA 1984 480 

AES 256 CBC RSA 2048 500 

 

G. AUTHENTICATION PROCESS  

The authentication process is considered relatively straightforward. 

Developers of the protocol designed the process to be simple as the rationale 

was to optimize performance and reduce complexity. When the ICC receives an 

initial authentication request command from the IFD, the ICC will verify the 

authenticity of the authentication information it received from the IFD. It does this 

by generating a response using randomly generated numbers, embedded with 
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data required by the initial authentication command and an asymmetric key. This 

response is sent back to the IFD where the IFD then has to decrypt the response 

using the initial authentication key. Upon successful decryption, the IFD creates 

yet another authentication command using random numbers and the symmetric 

key. Successful authentication is only achieved when the ICC is able to 

successfully decrypt the final authentication command. Again, depending on how 

this system is implemented, the final step consists of the ICC sending 

information, such as a PIN or biometric information, in its response to the IFD to 

provide a greater level of confidence in the identity of the cardholder. This 

confidence can then be leveraged to support access control via reference to user 

privileges carried on the card.  

The described authentication process, as shown in Figure 14, consists of 

six main steps, which will be described in detail in the subsequent sections: 

− Step 0: Preloading of required authentication information 

− Step 1: IFD initiates initial authentication (IA) command  

− Step 2: ICC generates authentication response to the IA command 

− Step 3: IFD verifies IA response and generates final authentication (FA) 

command to ICC using symmetric keys 

− Step 4: ICC decrypts FA command and sends back an encrypted FA 

response, containing personal information such as PINHash/biometric data to 

the IFD for authorization purposes 

− Step 5: Depending on implementation, the IFD decrypts the FA response and 

performs some backend checks to verify the information before granting 

access to the user 
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Figure 14.   The PLAID Protocol General Authentication Process 

1. Step 0: Preloading of Required Authentication Information 

For the PLAID protocol to function, both the IFD and ICC are required to 

be preloaded with the relevant authentication information. The authentication 

information includes a list of key set identifier (KeySetID). The KeySetID is used 

to identify the set of keys that will be used for authentication. In addition, the ICC 

is required to be preloaded with key diversification data (DivData) and an ACS 

record. The DivData is essentially an 8-byte number that is set at each 

instantiation for use in the key diversification algorithm. This is necessary due to 

the fact that symmetric keys are involved. Having the DivData prevents a breach 

of the system master keys in the event an ICC is lost. Next, the ACS Record is 

used together with the OpModeID for the purpose of authorization by the 

backend PACS or LACS access control system. This prevents legitimate users 

from obtaining access to places where they are not authorized due to insufficient 

privileges.  
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2. Step 1: IFD Initiates Authentication Command 

The authentication process begins with the IFD initiating the first 

authentication request. It does this by sending the ICC an initial authentication 

command in the form of an application data protocol unit (APDU) requesting it for 

the DivData that is pre-stored in the ICC. In the context of smart cards, an APDU 

is the communication unit between the IFD and the ICC. There are generally two 

categories of APDUs, the command and the response. The body of the APDU 

contains the list of authorized KeySetIDs that has been encoded using an 

Abstract Syntax Notation Number (ASN.1) and is hierarchically ordered with the 

preferred KeySetID appearing first. For the purposes of reducing complexity, the 

theory of how ASN.1 works, will not be explained in this thesis. Instead, the point 

that is significant is how ASN.1 is initially used to synchronize both devices prior 

to the use of encryption. The primary purpose of the authentication command is 

to protect the privacy of the DivData that is required to diversify the keys in the 

subsequent authentication command in order to prevent them from being sent in 

the clear. 

3. Step 2: ICC Responds to the IA Command by Generating IA 
Response 

Upon receiving the initial authentication command, the ICC parses the list 

of KeySetIDs and retrieves the first initial authentication key (IAKey) that matches 

a KeySetID supported by the ICC. A unique security feature that the PLAID 

protocol offers is the use of a ShillKey, which prevents any indication that an 

error has occurred in the event none of the KeySetIDs match a key stored by the 

ICC. The ICC still sends a random byte encrypted ShillKey back to the IFD 

indicating that a transaction has occurred. This minimizes the amount of useful 

information an attacker might be able to obtain from generated error codes in the 

event of failed transactions.  

According to the specifications [5] produced by the developers of the 

protocol, a true random number generator (TRNG) is used to produce a random 
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number (RND1). However, according to the Australian Standards AS 5185–2010 

document, the word “true” is dropped and only the term random number 

generator is used. This thesis agrees with the standards and argues that a 

random number generator based solely on deterministic computation cannot be 

regarded as “true” since its output is inherently predictable. That being said, the 

problem of distinguishing the difference between output of a “true” random 

number generator and a pseudo-random number generator is indeed very 

difficult and will not be discussed in this thesis. The assumption here however, is 

that the random number generator (RNG) is a piece of hardware embedded in 

the card that generates random numbers from a physical process such as 

thermal noise or other quantum phenomena to produce an output. The size of 

this random number is based on the key size of the selected AES cipher. In this 

case, if the selected AES cipher is 32 bytes, then the size of RND1 would be 

identical. 

Upon the generation of RND1, the ICC proceeds to retrieve the DivData to 

produce a string (STR1). Therefore, the contents of STR1 contain the  KeySetID, 

DivData and two copies of RND1. The purpose of having a repeat of RND1 in 

STR1 is for it to function as a checksum. The next step the ICC performs is to 

encrypt STR1 using the RSA algorithm to output the encrypted string, 

ESTR1=RSAENCRYPT 
IAKEY(STR1). The IAKey functions as the asymmetric key 

because the encryption process utilizes only its modulus and public exponent. 

ESTR1 is then transmitted, in the form of an IA response back to the IFD. The 

use of the asymmetric cipher prevents an adversary from decrypting the 

message over the air in the event a card is compromised.  

4. Step 3: IFD Responds to the IA Response from ICC by 
Generating FA Command 

Upon receiving the IA Response from the ICC, the IFD proceeds to 

decrypt it using the following steps. Firstly, the IFD calculates ESTR1 by using 

the first KeySetID identified in the ASN.1 list. This can be illustrated in the 

manner where STR1= RSADECRYPT 
IAKEY(ESTR1). Next, the IFD compares both 
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copies of the generated RND1 that was derived from decrypting ESTR1 to 

ensure that the decryption was successfully performed. In the event that the 

process was unsuccessful, the IFD utilizes the next set of KeySetID in the ASN.1 

list. This process is repeated until decryption is achieved or all available 

KeySetIDs have been attempted. As the same asymmetric keys might be utilized 

in multiple KeySetIDs for large implementations, there is a need for the IFD to 

extract both the KeySetID and the DivData from STR1 to determine which key 

set is being used. In addition, if the IFD has successfully decrypted and validated 

the encrypted string, then the ICC would have proven knowledge about an 

approved IAKey value. 

Upon obtaining all the required parameters, the IFD then proceeds to 

generate a new random number, RND2, using the RNG. Similar to the random 

number, RND1, produced by the ICC, the size of RND2 is identical to the key 

size of the selected AES cipher. However, RND2 is not used on its own. Instead, 

the IFD calculates a new composite number, RND3, by combining the hash of 

both RND2 and RND1, where RND3 = SHA (RND1 | RND2). Generating RND3 

prevents the possibility of man-in-the-middle attacks and guarantees that a 

malicious device would not be able to intercept the communication between both 

the initial authentication and final authentication steps. Next, the IFD utilizes the 

DivData to derive the final authentication key, FAKey, where FAKey= 

AESENCRYPT
FAKEY(DivData). Here, it is important to notice that the FAKey differs 

from the IAKey as it uses the symmetric AES cipher to achieve the required 

performance with a longer key length than current asymmetric ciphers are able to 

achieve. Hence, it can be said that the PLAID protocol uses a hybrid 

cryptography method.  

Lastly, the IFD creates a new authentication message, STR2, where 

STR2 = OpsModeID | RND2 | RND3. The OpsModeID is sent in the new 

authentication message as it aids the ICC in determining the type of system the 

IFD is and helps the ICC load the correct records or payload. The message is 
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then encrypted with the FAKey to produce the FA Command, where ESTR2 = 

AESENCRYPT
FAKEY(STR2), which is then sent over the air back to the ICC. This 

concludes step 3 of the process.  

5. Step 4: ICC Response to the FA Command 

Upon receiving the FA Command, the ICC proceeds to derive the 

authentication message through calculation where STR2 = 

AESDECRYPT
FAKEY(ESTR2). It is important to know that the FAKey that is to be 

used, is determined using the KeySetID that was previously agreed upon in Step 

2. As the ICC does not know what RND3 is, there is a need to derive the number 

using the hash of both RND1, which it already knows in Step 2, and RND2, which 

it obtained from the decrypted STR2. Upon determining RND3, the ICC checks 

its RND3 with the RND3 obtained from STR2. If the ICC successfully decrypts 

the message and validates RND3, then the ICC will consider the IFD 

authenticated. However, in the case that RND3 is not validated, the PLAID 

protocol has a special feature where the ICC responds using a random byte 

encrypted with a ShillKey. This prevents the possibility of leaking error 

information to attackers.   

Next, the ICC retrieves the appropriate fields such as the ACSRecords, 

based on the OpModeID extracted from STR2. The ICC then proceeds to create 

a new bit string, STR3, where STR3 = DivData | ACSRecord | (Null, PINHash 

and/or Biometric Minutiae). The reason why STR3 may contain a PINHash, a 

biometric minutiae or even an empty string is because it is highly dependent on 

how a system is being implemented. For environments that require tighter access 

control as opposed to a place where there is no need to verify user credentials, a 

combination of both a PINHash and minutiae could be required. STR3 is then 

encrypted to produce a FA Response where ESTR3 = AESENCRYPT
RND3(STR3). 

The cipher mode for this operation as well as the previous cipher mode in Step 3 

must be cipher block chaining (CBC) mode. The FA Response is then 

transmitted back to the IFD.  
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6. Step 5: IFD Processes Credentials 

The IFD proceeds to decrypt the FA Response by calculating STR3 where 

STR3 = AESDECRYPT
RND3(ESTR3). Next, the IFD compares the transmitted 

DivData sent in STR3 with the DivData that was sent in the initial authentication 

command. In the event both sets of DivData do not match, then the 

authentication process fails. Depending on implementation, if PIN authentication 

is required, then the IFD will have the cardholder’s PINHash in STR3 and it will 

compare the PINhash to the hash of the PIN input by the cardholder at the IFD. 

Similarly, if biometric authentication is required, the biometric information 

presented by the cardholder to the IFD is compared with the minutiae retrieved 

from STR3. Throughout this process, if any of the cardholder’s information does 

not match the information found in STR3, the authentication fails.  

Lastly, the ACSRecord is extracted from STR3 and mutual authentication 

is achieved. This record is then sent to the implemented back office system that 

is appropriate for controlling whatever access is being requested (e.g., opening a 

door). This ensures that a cardholder has sufficient privileges to access a 

particular object (physical or logical) once his/her identity has been verified.  

H. STRENGTHS AND LIMITATIONS  

This section presents an analysis of the strengths and limitations of the 

PLAID protocol. Similar to the analysis conducted in the earlier chapter, this 

analysis will be conducted at the protocol level, and hence will not address any 

details of the cryptographic algorithms that have been utilized in the protocol. The 

assumptions made here are again similar to those made previously that all 

algorithms function as specified and are secure.  
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1. Strengths 

a. Hybrid Cryptography 

The PLAID protocol utilizes both asymmetric and symmetric based 

cryptography. Having a hybrid of both kinds of cryptography provides a wide 

variety of advantages.  

Firstly, the advantages of using asymmetric-based cryptography to 

establish the initial authentication are examined. Using asymmetric keys for initial 

authentication minimizes the key distribution problem. The next advantage of the 

PLAID protocol using asymmetric encryption is that both the IFD and ICC do not 

need to have their secret shared between each other in order to communicate. 

Hence, in the event a particular card is compromised, an adversary would still be 

unable to decrypt the over-the- air traffic from any other cards. Although this form 

of encryption is strong and effective, asymmetric algorithms are comparatively 

more complex and computationally more expensive. These mean that the 

messages will take a longer time to encrypt and decrypt.  

Therefore, the PLAID protocol uses symmetric encryption for the 

second part of the process. Symmetric keys perform much faster when 

compared to asymmetric keys. In addition, this form of encryption is easy to use 

and simple to carry out. The protocol only needs to specify and share the secret 

key begin encrypting and decrypting messages. Many implementations utilize 

asymmetric encryption to encode a symmetric key and then transfer it to the 

other party. The symmetric key is then used to transmit the actual message 

which is much more efficient in CPU utilization. It would seem that the PLAID 

protocol has adopted a similar methodology, as the initial authentication 

command uses asymmetric encryption to encode the DivData and random 

number, which are used to produce the symmetric key that will be subsequently 

used. 
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b. Multi-Factor Authentication 

The PLAID protocol allows the use of multiple-factor authentication 

as the protocol not only requires the user have the card, but can also require the 

submission of a PIN (know), or a biometric (is). Having multi-factor authentication 

significantly decreases the probability that the requestor is presenting false 

evidence of its identity.   

c. Mutual Authentication, End-To-End Protection 

The PLAID protocol performs mutual authentication and provides 

end-to-end protection by providing a suite of mechanisms against vulnerabilities 

in current contactless transactions. For instance, having the protocol respond 

with a Shillkey instead of an error message prevents information from being 

leaked to an attacker performing a brute force attack, by removing any indication 

that an error has occurred. Next, the key diversification algorithm ensures that a 

system remains secure even in the event an ICC has its secret keys 

compromised, thus preventing possible replay attacks.  

2. Limitations 

a. Slow in Comparison to AES Only Authentication 

The AES encryption algorithm is currently used as the de facto 

standard for encryption in the smart card industry today [29]. Many smart card 

manufacturers opt to implement AES, as this form of encryption is 

computationally inexpensive and yet still relatively secure. This is understandable 

as smart cards have limited processing power and memory to perform complex 

encryption algorithms and adding additional memory and processors to handle 

such demands can come with steep price tags. As the PLAID protocol is required 

to perform both asymmetric encryption and symmetric encryption, its 

performance cannot match that of protocols using only symmetric encryption. In 

a study conducted by Sano et al on high performance smart cards using AES 

encryption, specifically Rijndael, with a 128 bit key length, it was determined that 
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it would take a total of 35,000 clock cycles on a 50Mhz microprocessor to encrypt 

the data [30]. This works out to be approximately 70ms, while data obtained from 

the PLAID protocol specification is approximately 200ms.  

b. Key Distribution Problem 

Since the PLAID protocol utilizes symmetric keys for encryption, 

there is still the problem pertaining to key distribution. Although the private keys 

are obtained from the key sets, vendors are still required to build key 

management for the PLAID protocol into existing or new key management 

systems. This may prove to be difficult to manage in the event that the protocol is 

implemented on a large scale.  

Based on the guidelines found in the FIPS 140–2 publication, the 

security requirements for cryptographic key management include random 

number and key generation, key establishment, key distribution, key entry/output, 

key storage, and key zeroization. The PLAID protocol fulfills the majority of these 

requirements except in the area of key distribution where the implementation is 

often left to vendors. The PLAID protocol specifications do not provide any 

direction or guidance on such matters, as this aspect of the overall security 

system is outside the scope of the authentication protocol. 
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V. METHODOLOGY 

A. INTRODUCTION 

This chapter discusses both the conceptual framework and the practical 

elements of the research conducted. It explores the research question in more 

depth, and discusses the various methods used that are most appropriate given 

the aims and nature of the research. Various standards and guidelines provided 

the foundation for creating the list of factors used for comparing both protocols. 

Each of the factors selected from these standards and guidelines will be 

discussed, explaining why they were selected for the purposes of comparison.  

B. DATA ANALYSIS 

Due to the nature of the research project where the result of data 

collection is qualitative in nature, it was deemed that the application of the 

Grounded Theory qualitative research approach through document analysis of 

the various security standards and guidelines for secure systems was the best 

research method to adopt. The utility of the Grounded Theory is a complex 

iterative process. It first begins with the raising of questions that help guide the 

research but are not intended to be confining. As data is gathered, core 

theoretical concepts are identified and linkages established between the 

concepts and data [31]. 

1. Open Coding 

When applying Grounded Theory, the first process was the use of open 

coding to establish common broad themes from the collected data that was 

related to the research question. Here, all standards and guidelines used by 

contactless smart cards were reviewed so as to derive a broad list of factors that 

could potentially be used as a basis for comparison between the OPACITY and 

the PLAID protocols.  
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2. Axial Coding 

Axial coding is the second pass through collected data, where the already 

identified themes from the open coding process are reanalyzed and filtered to 

produce a more detailed perspective whilst verifying the validity of the data. 

Through the use of this process, themes are delved deeper to create sub-themes 

resulting in the convergence of different factors obtained from the different 

standards and guidelines. The result of axial coding was the creation of a table 

with a detailed description of the various themes used for comparison. The result 

is summarized in Table 3:  

Table 3.  Compilation of Reviewed Standards 
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Local Workstation 
Some - CHUID I PKI-CAK 
High - Bio 
Very High - Bio-A I PKI-Auth 
Remote Network/Environment 

Assurance Level for Some - PKI-CAK 
Physical A ccess High - Section 6 PIV Cardholder Authentication 

8 FIPS 201-2 Control Very High - PKI-Auth pg.51 -69 
Logical Access Control 

Assurance Level for Some - CHUID I ViS I PKI-CAK 
Logical Access High - Bio Section 6 PIV Cardholder Authentication 

9 FIPS 201-2 Control Very High - Bio-A I PKI-Auth pg.51 -69 
Level 1 - Lit tle Confidence PIV 

Relation between PIV Level 2 - Some 
and E-A uthentication Level 3 - High Section 6 PIV Cardholder Authentication 

10 FIPS 201-2 Assurance Level Level 4 - Very High pg.51 -69 
1.) Number of factor of 
authentication 
a.) something you know 
b.) something you have 
c.) something you are 

2.) V erifier generated token input 
(e.g. nonce or challenge) has at 

11 SP 800-63-1 Tokens least 64 bits of entropy Section 6 Tokens - pg. 40-54 
Strongly bound credentials 
(tamper evidence - digit al 

Credential signature) or weakly bound Section 7 Token and Credential 
12 SP 800-63-1 Management credentials. Management pg. 55- 67 

Token and Credential V erification 
Services 
Level 2 - Long term 
authentication secrets shall not 
be revealed to any party except 
verifi ers + Cryptographic 
protections for private credentials 
for confidentiality and tamper 
protection + valid weak/strong 
bound credentials 
Level 314 - Secure Mechanisms 
to ensure that credentials are 
valid (temporary sessions keys) 

Credential + Challenge and Response + Section 7 Token and Credential 
13 SP 800-63-1 Management Level 2 Management pg. 55- 67 

Resistance against (Picture 
Pg. 77 - for Level) 
a.) Online guessing 
b.) Phishing and Pharming 
(verifier impersonation) 
c.) Eavesdropping 
d.) Replay resistance 
e.) Session Hijack 
f.) MITM 

Level 2 - prove posession and 
control of token + Transmission 
confidentiality and integrity + 
Long term shared secret not 
revealed + Level 2 token + 
cookie for authentication 
Level 3 - Multifactor remote 
network authentication (level 3 

Authentication token) Section 8 Authentication Process pg. 67 
14 SP 800-63-1 Process Level 4 - Level 4 token 80 



 62 

 

3. Selective Coding 

The final pass in the coding process would be the use of selective coding. 

Here, the derived themes and codes from the previous two coding processes are 

combined and analyzed repeatedly to ensure that these themes and code 

provide a good basis for comparing the two different protocols while also 

answering the research question. The result of this coding process was the 

creation of a table that accurately identifies factors relating to this research 

project, as shown in Table 4: 

 

 

 

 

 

 

 



 63 

Table 4.  Compilation of Reviewed Standards 

 

The description of each of the comparison factors will be discussed when 

addressing the various standards and guidelines. 

C. STANDARDS AND GUIDELINES 

Many standards and guidelines were reviewed to determine the most 

apropos to compare and contrast the protocols. One discerning issue was that 

many of these standards and guidelines are either too vague, containing only 

generic information regarding security requirements; or include technical 

coverage which is not applicable to answering the research question. An 

example to illustrate this is the Health Insurance Portability and Accountability 

Act (HIPPA), which stipulates generic security safeguards that must be 

implemented to control access to computer systems containing public health 

information, but does not specify the type of factors that must be employed when 
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doing so. Two other standards that were considered include EMV and ISO 

14443. EMV is a global standard for inter-operation of ICCs and ATMs for 

authenticating credit and debit card transactions, while ISO 14443 is an 

international standard that defines contactless cards used for identification and 

the transmission protocols for communication. These standards provide 

comprehensive technical information relating to the physical implementation of 

the interactions between the smart cards and card terminal but there is limited 

information regarding the implementation of security mechanisms. These 

standards were thus not suitable for deriving comparison factors in our report. 

1. Federal Information Processing Standards 140–2 Publication 
(FIPS Pub 140–2) 

This standard specifies the security requirements that will be satisfied by a 

cryptographic module utilized within a security system. The publication helps 

coordinate the requirements and standards for cryptography modules that 

include both hardware and software components. Essentially, the publication 

defines four levels of security, from “Level 1” to “Level 4.” “Level 1” provides the 

lowest level of security. Basic security requirements are specified for a 

cryptographic module but no specific physical security mechanisms are required. 

“Level 2” improves upon the physical security mechanisms of “Level 1” by 

requiring features to have anti-tampering mechanisms that protect against 

unauthorized physical access. Physical security mechanisms required at “Level 

3” are intended to have identity based authentication mechanisms, enhancing the 

security provided by the role based authentication mechanisms specified at 

“Level 2.” Finally, “Level 4” provides the highest level of security by providing 

holistic protection around the cryptographic module with the intent of both 

detecting and responding to all unauthorized attempts at physical access.   

Specific sections of his publication are found to be of relevance when 

comparing the different protocols. Firstly, Section 4.1 of the publication relates to 

the cryptographic module specification where it states that the cryptographic 

module shall implement at least one approved security function used in an 
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approved mode of operation. What we interpret from the term ‘security function’ 

would be how the protocols are required to use approved algorithms to perform 

encryption so as to protect the data they are sending. As mentioned previously in 

both Chapters III and IV, both protocols have many different modes of 

operations. Hence, we wanted to do a comparison that specifically looks at the 

factors of authentication, using approved algorithms, in a particular mode of 

operation.  

Next, Section 4.3 mentions the need to have authentication mechanisms 

within a cryptographic module to authenticate and verify that the operator 

accessing the module is authorized to perform the stipulated task. However, 

there are two different kinds of authentication mechanisms that may be 

implemented. Firstly, role-based authentication mechanisms authenticate only 

the set of roles stipulated and do not authenticate the individual identity of the 

operator. The second kind would be identity-based authentication where the 

module requires the operator to be individually identified before authorizing the 

operator to perform a task. We thought that by understanding the different type of 

authentication mechanisms found in the two protocols, it would provide a good 

basis for comparison. 

Lastly, Section 4.7 specifies the requirements for cryptographic key 

management that includes issues such as random number and key generation, 

key establishment and key distribution. Using the various sections in the 

publication as reference, three factors, namely, “Factors of Authentication,” 

“Granularity of Identity” and “Key Management” were derived to compare both 

protocols. ‘Factors of Authentication’ examines the number of factors of 

authentication employed by both protocols, as well as the assurance and 

confidence level provided for both physical and logical access. The term 

‘Granularity of Identity’ examines the level of granularity that the authentication 

mechanisms perform, which could range from identity-based authentication to 

role-based authentication. Finally, ‘Key Management’ examines the protocols for 

potential key distribution issues. 
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2. Federal Information Processing Standards 201–2 Publication 
(FIPS Pub 201–2) 

This standard specifies the architecture and technical requirements for a 

common identification standard for Federal employees and contractors. The goal 

of this standard is to achieve the appropriate security assurance for multiple 

applications by verifying the claimed identity of these individuals seeking physical 

access to these government facilities and logical access to government 

information systems. In addition, the standard also provides detailed 

specifications that will support technical interoperability among personal identity 

verification (PIV) systems of Federal department and agencies. It describes the 

card elements, security controls and interfaces required to securely retrieve, 

process and store identity credentials from the card. This publication provides 

important factors for doing comparison between the two protocols such as the 

assurance level provided by different authentication mechanisms for both 

physical and logical access control. 

Table 5.  Authentication for Physical Access   

 

Table 6.  Authentication for Logical Access 
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This standard also defines a suite of identity authentication mechanisms 

that are supported by all the PIV cards and their applicability in meeting the 

requirements for identity assurance. This section provided another means for 

comparing both protocols as their authentication mechanisms were very different. 

The PLAID protocol has PIV biometric authentication mechanisms that can be 

leveraged upon to provide better security. Hence, this section reinforces the 

notion of “Factor of Authentication” as it addresses the level of assurance and 

confidence of the authentication scheme.  

3. NIST Special Publication 800–63–1: Electronic Authentication 
Guideline. 

The NIST special publication 800–63–1 provides technical guidelines to 

agencies that allow employees to remotely authenticate their identity to a Federal 

IT system using widely implemented methods for remote authentication such as 

PKI. With such methods, the individuals to be authenticated prove that they have 

possession of established secrets. The document also describes four assurance 

levels with qualitative degrees of confidence in the asserted identity’s validity; 

ranging from “Level 1” where there is little or no confidence, to “Level 4” where 

there is very high confidence. In particular, the sections we focused on 

addressed the technical requirements for each of the four levels of assurance, 

specifically in the areas of token and credential management mechanisms used 

to establish and maintain token and credential information, as well as the 

protocols used to support the authentication mechanisms found in Section 7 and 

Section 8 of the publication. Table 7 provides an excellent representation of the 

assurance levels for multi-token authentication schemes: 
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Table 7.  Assurance Levels for Multi-Token Authentication Schemes  

 

The respective sections provided additional factors such as “Credential 

Confidence,” “Subject Token Binding,” “Non Repudiation” and “Man-in-the-

middle (MITM) Resistance.” Here, the term ‘Credential Confidence’ refers to the 

amount of assurance the relying party (i.e., the entity that is authenticating a 

subject as a prerequisite to granting some access) has over the integrity of the 

secret being used to authenticate a subject. Next, the term “Subject Token 

Binding” examines the extent of the binding between the subject and the token 

so as to prove that the subject is the rightful owner of the token and ‘Non-

Repudiation’ examines if the subject is able to deny having participated in a 

particular transaction. Lastly, the protocols are examined to assess their 

resistance  to MITM attacks.  
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4. NIST Special Publication 800–116: A Recommendation for the 
Use of PIV Credentials in Physical Access Control Systems 
(PACS). 

This document describes a strategy for selecting the appropriate PIV 

authentication mechanisms to manage physical access to government facilities 

and assets. In addition, this document also describes the desired characteristics 

of a target implementation of PIV enabled PACS. It also discusses some of the 

PIV card capabilities so a that risk-based assessment can be aligned with the 

appropriate PIV authentication mechanism. However, the information that was 

most relevant is in Section 7 where recommendations are provided on the use of 

PIV authentication mechanisms in a PACS environment. Table 8 illustrates the 

many different combinations of authentication mechanisms and the number of 

factors required. 

Table 8.  Authentication Factors of PIV Authentication Mechanisms  

 

The publication also provides recommendations on how authentication 

mechanisms ought to be utilized based on the protective areas established 

around assets or resources. Using the concept of “Controlled, Limited or 

Exclusion” areas, the number of authentication factors that is recommended is 

shown in Table 9. 
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Table 9.  Authentication Factors for Security Areas  

 

The points brought up in these sections reinforced the concept of having 

“Factors of Authentication” as a means of comparison of the two different 

protocols.  

5. NSA Suite B Cryptography website / NSA The Case for Elliptic 
Curve Cryptography 

To ensure that our research was thorough and rigorous, we also looked at 

some of the recommendations made by the NIST publication 800–131A 

addressing issues pertaining to the cryptographic algorithms and key lengths. In 

addition, we also looked up the National Security Agency (NSA) website to 

determine the type of cryptography used to protect national security systems and 

national security information. The Suite B cryptography utilizes AES with 128-bit 

keys to provide protection for classified information up to the SECRET level. 

Similarly, an ECDSA using a 256-bit prime modulus elliptic curve also provides 

adequate protection for classified information up to SECRET level [32]. However, 

to protect information classified as TOP SECRET, there is a need to use either 

AES with 256-bit keys or 384-bit prime modulus ECC. Another NSA article talks 

about the apparent benefits of using elliptic curve cryptography [33]., The article 

addresses the issue of bit entropy and how the use of ECC provides much better 

security as a result of having higher bit entropy.  

After reviewing the respective materials, we felt that factors such as 

“Protection of Classified Material” and “Bit Entropy” were important attributes 

that could be used to benchmark the performance of the two different protocols. 

Specifically, the ‘Protection of Classified Material’ examines the suitability of the 
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protocols to protect data of different classification levels, while ‘Bit Entropy” 

examines the per bit security provided by both the OPACITY and the PLAID 

protocols. 

6. Payment Card Industry Data Security Standard (PCI-DSS) / ISO 
7816–8 

Two other standards that were reviewed were the PCI-DSS and ISO 

7816–8. The PCI-DSS was developed to encourage and enhance cardholder 

data security by providing a baseline of technical and operational requirements 

designed to protect cardholder data. Some of the requirements stipulated in the 

standard included the encryption of cardholder data across public networks and 

the assignment of a unique ID to users. Many of these requirements were vague 

and thus not deemed suitable factors for comparison. Similarly, when reviewing 

the ISO 7816–8 standard, a standard that specifies inter-industry commands for 

integrated circuit cards that may be used for cryptographic operations, the 

requirements were too technical and were not useful in helping us derive 

additional factors for comparison. 

Of all the standards and guidelines that were examined, none of them 

focuses on the performance of various cryptographic mechanisms. However, 

such performance directly influences the operational acceptability (speed of 

transaction) of any given mechanism and is thus an important factor of 

consideration when deciding which cryptographic mechanisms to adopt for real 

time operations. Hence, “Cipher Performance,” which examines the latency of 

cryptographic algorithms, is another factor identified to compare the protocols.    
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VI. COMPARISONS AND FINDINGS 

A.  Comparisons 

The OPACITY and the PLAID protocols are privacy-enhanced protocols 

that perform mutual authentication, provide protection of information that is 

exchanged between the smart card and the card terminal to protect against most 

types of attacks on smart card systems. The protocols use a mixture of 

symmetric and asymmetric cryptography during the authentication process. The 

cryptography is based on ISO, FIPS or NIST approved or recommended 

cryptographic algorithms and modes of operation, such as ECDH, RSA 256 and 

AES 256. In addition to authentication, the protocols also provide support for 

authorization processes.  

Despite the similarities between the protocols, there are distinct 

differences between the protocols. This chapter uses the list of factors identified 

in Chapter V to compare the protocols. A summary of the comparison is 

presented in Table 10.  
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Table 10.  Summary of Comparisons  

 

 

 
 
 
 

Comparison 
S/N Factors OPACITY PLAID 

Able to support up to three 
factors authentication based on 

Single factor authentication possession of smart card, PIN 
Factors of based on possession of smart authentication and biometric 

1 Authentication card authentication. 
Role-based operator 

Granularity of Identity-based operator authentication or identity-based 
2 Identity authentication operator authentication 

Credential Strong assurance on the Weak assurance on the 
3 Confidence integrity of the credentials integrity of the credentials 

Subject-Token Weak binding between subject Able to achieve strong binding 
4 Binding and token between subject and token 

Non- Does not provide user non Able to provide user non-
5 Repudiation repudiation. repudiation 

MITM Able to provide resistance to 
6 Resistance Vulnerable to relay attack relay attack 

Protection of 
Classified 
Material Suitable to be used for Suitable to be used for 
(Classification protection of classified data up protection of classified data up 

7 Level) to Top Secret level. to Secret level. 
Able to support object oriented 

Authorization Able to support object oriented and subject oriented 
8 Support authorisation process authorisation process 

Key Minimise key distribution Potential key di stri buti on 
9 Management problem. problem 
10 Bit Entropy Higher bit entropy Lower bit entropy 

Slower performance but may 
become faster than PLAID Faster performance but may 
protocol if PLAID protocol become slower than OPACITY 
requires RSA operations with protocol if the protocol requires 

Cipher key length greater than 2048 RSA operations with key length 
10 Performance bits greater than 2048 bits 
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1. Factors of Authentication  

The OPACITY protocol is a single factor authentication protocol, while the 

PLAID protocol is able to be either a single or multi-factor authentication protocol, 

employing up to three factors of authentication.  

The OPACITY protocol’s single factor authentication is based on proof of 

possession of a valid smart card. The single factor authentication protocol does 

not achieve a high assurance level for the token or the authentication scheme for 

electronic authentication [28]. The protocol is only able to achieve, at most, level 

2 assurance for the token. This means that the protocol can only achieve, at 

most, level 2 assurance for the overall authentication scheme. For personal 

identification verification, the protocol only provides some confidence in the 

asserted identity for local and remote physical access requests, as well as for 

logical access requests [34]. If the protocol is to be used for physical access, the 

protocol is only recommended to be used for authentication to controlled areas 

[27].  

The PLAID protocol supports multi-factor authentication by employing PIN 

authentication or biometric authentication based on a biometrically unique 

feature, in addition to the proof of possession of a valid smart card. The protocol 

can be used as a two-factor authentication protocol by employing either PIN 

authentication or biometric authentication in addition to the proof of possession of 

a valid smart card; and it can be used as a three-factor authentication protocol by 

employing PIN authentication and biometric authentication, as well as proof of 

possession of a valid smart card. With multi-factor authentication, the protocol is 

able to achieve up to level 3 assurance for the token and overall authentication 

scheme for electronic authentication [28]. For personal identification verification 

purposes, the multi-factor authentication protocol is able to provide very high 

confidence in the asserted identity for local and remote physical access requests, 

as well as logical access requests [34]. If the protocol is to be used for physical 

access, the protocol is suitable to be used for authentication to controlled, limited 

and exclusive areas [27].     
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2. Granularity of Identification 

The OPACITY protocol performs identity-based authentication, while the 

PLAID protocol performs role-based authentication.  

Both of the protocols performs authentication based on PKC. PKC is able 

to perform identity-based authentication or role-based authentication, depending 

on the implementation of the private keys. If the private keys are uniquely 

assigned to each claimant, identity based authentication is achieved. On the 

other hand, if the private keys are shared among a number of claimants, role-

based authentication is achieved. The recommended implementation is that the 

private keys shall be uniquely assigned to each claimant to achieve identity-

based authentication to verify the identity of the claimant and the authorization of 

the claimant to assume the selected role [35].  

The OPACITY protocol follows the recommendation to perform identity-

based authentication. For the PLAID protocol, authentication is performed at the 

building, role or function level to achieve role-based operator authentication. 

Each building, role or function is assigned a KeySetID and a pair of RSA keys. 

The KeySetID and the corresponding public RSA key is stored at the card 

terminal while the KeySetID and the corresponding private RSA key is stored on 

the smart card. During authentication, the protocol verifies that the smart card 

and the card terminal have the correct KeySetID and the corresponding key 

pairs. However, the protocol is able to achieve identity-based operator 

authentication if biometric authentication is also employed. As the biometric 

feature is unique to each individual, the biometric feature can be used to uniquely 

identify each individual to achieve identity-based authentication     

3. Credential Confidence 

The OPACITY protocol provides tamper-evident protection and strong 

assurance on the integrity of the credentials while the PLAID protocol does not. 

The OPACITY protocol performs authentication based on PKC. The CVC, 

which contains the credentials (i.e., identification information and user’s public 
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authentication key), is defined based on the X.509 format for public certificate 

and is digitally signed using the root private digital signature keys of the issuer. 

The card terminal’s CVC is digitally signed using the root private digital signature 

key for the card terminal domain while the smart card’s CVC is digitally signed 

using the root private digital signature for the smart card domain. During 

authentication, the digital signatures are verified using the corresponding root 

public digital signature keys from the respective domains before the credentials 

in the CVCs are used. The use of digital signature provides tamper-evident 

protection and strong assurance on the integrity of the credentials in the CVC. 

The PLAID protocol does not provide tamper-evident protection and 

assumes that the integrity of the credentials is preserved. The ACS record 

corresponding to the requested OpModeID, is returned from the smart card to the 

card terminal and used for authorization without any verification of the integrity of 

the record. This does not provide strong assurance as the ACS record can be 

injected or modified by an attacker who may be a legitimate user without the 

authorization rights to gain unauthorized access to the requested resource. 

4. Subject-Token Binding 

The OPACITY protocol exhibits weak binding between the subject and the 

token, while the PLAID protocol is able to achieve strong binding between the 

subject and the token.  

The OPACITY protocol exhibits weak binding between the subject and the 

token as the protocol does not require the claimant to prove control of the smart 

card. In addition, as all the required authentication information is stored in the 

smart card, the claimant will be successfully authenticated, even if the claimant is 

not the rightful owner of the smart card, as long as the claimant possesses a 

valid smart card. Without proving control of the smart card during the 

authentication process, the protocol does not even achieve the minimum 

assurance level for the authentication scheme for electronic authentication [28].   
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The PLAID protocol achieves strong binding between the subject and the 

token by employing multi-factor authentication, such that the claimant needs to 

prove possession and control of the smart card during the authentication 

process. Proof of control of the smart card is achieved by employing PIN 

authentication, biometric authentication, or both. PIN authentication is performed 

by requiring the claimant to enter a PIN at the card terminal and comparing the 

hash of the entered PIN to a copy of the hash of the PIN that is stored in the 

smart card. Since the PIN should only be known by the rightful owner, the 

claimant would have successfully proved control/ownership of the smart card if 

the hashes match. Biometric authentication is performed by scanning a 

biometrically unique feature of the claimant and comparing the biometrics to the 

minutiae that is stored in the smart card. As the biometric is unique to the 

claimant, the claimant would have successfully proved control/ownership of the 

smart card if the biometrics match. If the protocol does not employ either PIN 

authentication or biometric authentication, the protocol exhibits weak binding 

between the human subject and the token, as is the case with OPACITY 

protocol. 

5. Non-Repudiation 

The OPACITY protocol does not achieve user non-repudiation, while the 

PLAID protocol does.  

The OPACITY protocol does not achieve user non-repudiation due to the 

weak binding between the subject and the token. The owner could claim that he 

had lost his smart card, and the smart card was picked up by an unknown party 

to make the transaction. The protocol only achieves “non-repudiation” in that a 

particular smart card is used in the transaction; vice a particular person.  

The PLAID protocol achieves user non-repudiation by employing biometric 

authentication based on biometrically unique feature, in addition to proof of 

possession of a valid smart card. As the biometric feature uniquely identifies the 

claimant, the claimant cannot deny participation in the transaction. If the protocol 
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does not employ biometric authentication, the protocol does not achieve user 

non-repudiation, as is the case with the OPACITY protocol.   

6. Man-in-the-Middle Resistance 

Both of the protocols are resistant to MITM attacks such as active 

eavesdropping and modification attacks. However, the OPACITY protocol is 

vulnerable to relay attack while the PLAID protocol is not.   

The OPACITY protocol is vulnerable to relay attack because the protocol 

only requires the claimant to prove possession of the smart card and does not 

require the claimant to prove control/ownership of the smart card. Using a relay 

attack, the card terminal is tricked into believing that the claimant possesses a 

valid smart. 

The PLAID protocol provides resistance against relay attacks if the 

protocol employs PIN or biometric authentication in addition to proof of 

possession of a valid smart card. In this case, the attacker will not be able to 

produce the PIN or biometric feature for authentication, mitigating the relay 

attack. If the protocol does not employ PIN or biometric authentication, the 

protocol becomes vulnerable to relay attack.   

7. Protection of Classified Material 

The OPACITY protocol can be used to protect classified material up to the 

top-secret level, while the PLAID protocol can only be used for protection of 

classified material to the secret level.  

During the authentication process, the protocols derive session keys that 

are used to protect the data that is exchanged between the smart card and the 

card terminal after successful authentication. These keys are either used for 

encryption or hashing. The OPACITY protocol is able to derive different session 

keys for encryption and hashing while the PLAID protocol is only able to derive 

one session key for both operations. In addition, for the PLAID protocol the 
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length of the session key needs to be similar to the size of the AES cipher 

selected, which implies that the maximum key length can only be up to 256 bits. 

To protect top-secret data, the NSA requires an AES with 256-bit keys, 

Elliptic Curve Public Key Cryptography using the 384-bit prime modulus, and 

SHA with 384-bit keys [32]. The OPACITY protocol is configurable to support the 

required key lengths to provide protection of data up to the top-secret level. 

However, for the PLAID protocol the maximum key length of 256 bits is 

insufficient to support SHA-384 operation. The maximum key length of 256 bits is 

only sufficient to provide protection up to the secret level.   

8. Authorization Support 

Both of the protocols are able to support authorization processes. 

However, the OPACITY protocol is only able to support object-oriented 

authorization, while the PLAID protocol is able to support object-oriented 

authorization and subject-oriented authorization [36].  

For the OPACITY protocol, the identification information in the CVC can 

be verified by comparing it against an access control list (object-oriented), which 

is stored centrally at the backend or locally at the card terminal; to determine if 

the claimant is authorized access to the requested resource.   

For the PLAID protocol, the smart card returns the ACS record 

corresponding to the requested OpModeID to the card terminal for authorization. 

The identification information in the ACS record can be verified by comparing it 

against an access control list (object-oriented) in a similar manner to the 

OPACITY protocol. Alternatively, the ACS record can be used as a capability list 

(subject-oriented). When the card terminal polls for the ACS record 

corresponding to the OpModeID, the presence of an ACS record corresponding 

to that OpModeID is an indication of whether the claimant is authorized access to 

the requested resource. Only if a record is present is the claimant authorized 

access to the requested resource.  
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9. Key Management 

The OPACITY protocol has minimized key distribution problems, while the 

PLAID protocol has a potential key distribution problem.  

The OPACITY protocol has minimized key distribution problems because 

the protocol is based on PKC. One advantage of PKC is that it has minimized 

key distribution problems, as there is no need for pre-defined shared secrets to 

be securely distributed to all of the parties that may utilize them. Instead, all the 

shared secrets are derived and established during the authentication process 

using ECDH or a predefined concatenation of KDFs. However, CVC revocation 

functionality is not designed into the protocol. In the event that a smart card is 

compromised and there is no CVC revocation functionality, the user identification 

information and associated authorization privileges, in addition to the keys, need 

to be removed from the backend system, re-generated, re-issued, and updated 

to the backend system. This requires careful key management from the backend 

system.   

The PLAID protocol has a potential key distribution problem because of 

the need for predefined shared secrets. The key distribution problem is further 

aggravated by the application of the RSA keys in a symmetric manner. Each 

building, role or function is assigned a KeySetID and a pair of RSA keys. The 

KeySetID and the public RSA key are stored at the card terminal, while the 

KeySetID and the private RSA key are stored on the smart card. Users who 

access the same building, have the same role, or perform the same function will 

share the same respective private RSA keys. In the event that a smart card is 

compromised (i.e., the keys are recovered by an attacker), the protocol relies on 

key diversification to ensure that the system remains secure [5]. However, if the 

attacker is able to recover the keys stored on the smart card, it is likely that the 

attacker is also able to recover the diversification data stored on the smart card. 

Hence, key diversification does not provide effective protection to ensure that the 

system remains secure if the smart card is compromised. A better approach is to 

rely on multi-factor authentication based on PIN or biometric authentication. 
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Since the attacker is unlikely to know the PIN or possess the same biometric 

feature, the system remains secure. However, it is possible that an attacker 

obtains possession of a valid smart card and manages to alter the PIN hash and 

minutiae stored on the smart card to achieve successful authentication. 

Therefore, the best practice is to revoke, replace and re-distribute all the 

compromised keys to all affected users and systems whenever a smart card is 

compromised. This results in a difficult key distribution problem in the long run.  

10. Bit Entropy 

The OPACITY protocol is able to achieve higher key strength per bit 

compared to the PLAID protocol. 

The OPACITY protocol uses ECC while the PLAID protocol uses RSA. 

The main advantage of ECC over RSA is that ECC is able to achieve higher key 

strength per bit than RSA for the same key length. For instance, to achieve the 

same bit entropy of 128 bits for a symmetric key, ECC only requires a 256 bits 

key while RSA requires a 3072 bits key as shown in Table 11 [33]. This implies 

that to achieve a given security level, as measured by resistance to brute-force 

key guessing, the OPACITY protocol can achieve this level with a smaller, more 

efficient, key size as compared to the PLAID protocol.  

Table 11.  NIST Recommended Key Sizes 

Symmetric Key Size 
 (bits) 

RSA and Diffie-Hellman 
Key Size (bits) 

Elliptic Curve Key Size  
(bits) 

80 1024 160 
112 2048 224 
128 3072 256 
192 7680 384 
256 15360 521 

11. Cipher Performance 

The OPACITY protocol is slower in performance compared to the PLAID 

protocol even if the PLAID protocol employs RSA up to a key length of 2048 bits. 

This is because the PLAID protocol consists mainly of symmetric key operations 
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and only two asymmetric key operations (i.e. RSA encryption and decryption) 

while the OPACITY protocol consists of more symmetric and asymmetric 

operations. Even though the OPACITY protocol employs ECC, ECC only 

achieves faster performance in specific operations such as key generation and 

digital signature signing, which are not employed in the PLAID protocol [37], [38], 

[39].  

However, the speed of RSA encryption and decryption operations 

decreases multiplicatively for a given increase in key length [40]. Hence, in the 

long run when RSA requires a much longer key length than 2048 bits to preserve 

a defined security level [41], the OPACITY protocol will make up for some of its 

speed disadvantage against the PLAID protocol. 

B. SUMMARY OF FINDINGS 

The key advantage of the PLAID protocol over the OPACITY protocol is its 

capability to support multi-factor authentication. By employing multi-factor 

authentication, the PLAID protocol produces a stronger authentication scheme 

and provides higher assurance than the OPACITY protocol. As a result, the 

PLAID protocol is able to achieve a strong binding between the subject and the 

token and thus provide protection against relay attack and user repudiation. 

However, if multi-factor authentication is not employed, the PLAID protocol 

becomes a single factor authentication protocol, like the OPACITY protocol. In 

this case, the only advantages of the PLAID protocol over the OPACITY protocol 

are that the PLAID protocol provides more flexibility in authorization 

implementation and faster cipher performance if the RSA key length is shorter 

than 2048 bits.   

On the other hand, the key advantage of the OPACITY protocol over the 

PLAID protocol is that it has simpler key distribution problem. This is attributed to 

the use of PKC in the OPACITY protocol. Other advantages include higher bit 

entropy and higher credential confidence. The cipher performance of the 
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OPACITY protocol will also become better than the PLAID protocol when RSA 

requires a much longer key length than 2048 bits to provide a given 

cryptographic security level.    

Overall, the PLAID protocol is able to produce a stronger authentication 

scheme, it provides higher assurance and it is more versatile in implementation 

than the OPACITY protocol. The PLAID protocol, employing multi-factor 

authentication, is more suitable for use in higher risk environments than the 

OPACITY protocol. However, due to the more complex key distribution problem 

of the PLAID protocol, the PLAID protocol is not recommended for large-scale 

deployment. On the other hand, the OPACITY protocol has the simpler key 

distribution problem. However, for the OPACITY protocol to be used in high-risk 

environments, the protocol needs to be complemented with external security 

mechanisms. For instance, the backend will be responsible to perform further 

authentication such as PIN authentication. The claimant will be required to enter 

a PIN at the keypad and the entered PIN will be verified against a copy of the 

PIN that is stored in the backend. If the PINs match, authentication is successful. 

Otherwise, authentication is unsuccessful.   
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VII. CONCLUSIONS 

There is a proliferating use of contactless smart card systems for 

identification, financial transactions, and access control due to their convenience, 

performance, and the basic security that their employment provides, as well as 

the ease of integrating the systems for use in a wide range of other applications. 

However, despite their benefits, contactless smart card systems are vulnerable to 

attacks such as eavesdropping, modification, and MITM attacks.  

The OPACITY protocol and the PLAID protocol are able to provide 

protections against most of these attacks and ensure secure communications 

between the smart card and the card terminal. Analysis of the protocols revealed 

that the PLAID protocol is able to produce an overall stronger authentication 

scheme and provide higher assurance when multi-factor authentication is 

employed. If the PLAID protocol does not employ multi-factor authentication, it 

will only provide equivalent assurance to the OPACITY protocol.   The higher 

assurance provided by a PLAID protocol that employs multi-factor authentication 

makes the protocol suitable to be used in higher risk environments than the 

OPACITY protocol. However, due to the more complex key distribution problem 

of the PLAID protocol, it is not recommended for large-scale deployment. In 

those cases, it is better to use the OPACITY protocol, which has a simpler key 

distribution problem. However, for the OPACITY protocol to be used in high-risk 

environments, the protocol needs to be complemented with external security 

mechanisms to achieve multi-factor authentication.     

As alluded to in Chapter I, Section C titled “Research Method,” this 

analysis was performed qualitatively using materials from open literature. 

However, due to the limited literature on the OPACITY and PLAID protocols, the 

understanding of the OPACITY protocol and the PLAID protocol was derived by 

analyzing the protocols’ specifications and relevant documents on cryptography 

and authentication. As such, the analysis may not capture working details 

concerning these protocols. Hence, a next step of this research would be to 
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acquire the protocols and analyze their implementation in controlled laboratory 

experiments in order to measure their actual performance and perhaps identify 

additional areas that may affect the determination of which protocol is best for 

particular uses and environments.  
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